scholarly journals MOPITT total column CO over the Indian Subcontinent: Spatial variability and long term trend

Author(s):  
S. Srivastava

Total column carbon monoxide (CO) concentration obtained from MOPITT (Measurement Of Pollution In The Troposphere) have been analyzed over the Indian subcontinent for a period of March, 2000 to December, 2010. Average monthly variation of columnar CO is investigated over the eastern and western coasts of India (latitude > 18&deg;N). The columnar CO concentration is found to be larger over the east coast than the west coast. The higher columnar CO concentrations (2.3&ndash;2.8 x 1018 molec/cm<sup>2</sup>) occur during November to April months over both the coastal regions. The lower columnar CO concentrations (1.6&ndash;1.7 x 1018 molec/cm<sup>2</sup>) occur during July-August months over these coastal regions when air blows from the Bay of Bengal towards the east coast and from the Arabian Sea towards the west coast. The latitudinal variations of ten year averaged columnar CO are also investigated over the eastern and western coastlines of India (23.5&deg;N to 8.5&deg;N). The latitudinal gradient is stronger over the eastern coast (3.2 x 1016 molec/cm<sup>2</sup>/&deg;N) with respect to the western coast (8.6 x 1015 molec/cm<sup>2</sup>/&deg;N) due to injection of highly polluted air mass from the Indo-Gangetic Plain over the northern part of Bay of Bengal. In order to investigate the source of pollution, variation of columnar CO concentration over the 11 polluted cities situated in the Indo-Gangetic plain has been examined. Columnar CO concentrations are found to be significantly higher over the southeast Indo-Gangetic plain and show a linear decreasing tendency from southeast to northwest cities. The maximum columnar CO concentration is observed over Patna (~ 2.48 x 1018 molec/cm<sup>2</sup>) and minimum over Multan (~ 2.19 x 1018 molec/cm<sup>2</sup>). This indicates that south-eastern part of Indo-Gangetic plain is mainly contributing towards enhancement in columnar CO concentration over the eastern coast. Columnar CO concentration showed an increasing trend during 2000 to 2010 over all the 11 cities. This increasing tendency is stronger over the cities situated in the southeast part of Indo-Gangetic plain.

2020 ◽  
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath

&lt;p&gt;Black carbon (BC) aerosols over the Indian subcontinent have been represented inadequately so-far in chemical transport models restricting the accurate assessment of BC-induced climate impacts. The divergence between simulated and measured BC concentration has specifically been reported to be large over the Indo-Gangetic Plain (IGP) during winter when a large BC burden is observed. In this study, we evaluate the BC transport simulations over the IGP in a high resolution (0.1&amp;#186; &amp;#215; 0.1&amp;#186; ) chemical transport model, CHIMERE. We examine the model efficiency to simulate the observed BC distribution executing five sets of simulation experiments: &lt;em&gt;Constrained &lt;/em&gt;and&lt;em&gt; bottomup&lt;/em&gt; (&lt;em&gt;Smog, Pku, Edgar, Cmip&lt;/em&gt;) implementing respectively, the recently estimated India-based constrained BC emission and the latest bottom-up BC emissions (India-based: Smog-India, and global: Coupled Model Intercomparison Project phase 6 (CMIP6), Emission Database for Global Atmospheric Research-V4 (EDGAR-V4) and Peking University BC Inventory (PKU)). The mean BC emission flux over most of the IGP from the five emission datasets is considerably high (450&amp;#8211;1000 kg km&lt;sup&gt;-2&lt;/sup&gt; y&lt;sup&gt;-1&lt;/sup&gt;) with a relatively low divergence obtained for the eastern and upper-mideastern IGP. Evaluation of BC transport simulations shows that the spatial and temporal gradient in the simulated BC concentration from the &lt;em&gt;Constrained &lt;/em&gt;was equivalent to that from the &lt;em&gt;bottomup&lt;/em&gt; and also to that from observations. This indicates that the spatial and temporal patterns of BC concentration are consistently simulated by the model processes. However, the efficacy to simulate BC distribution is commendable for the estimates from &lt;em&gt;Constrained&lt;/em&gt; for which the lowest normalised mean bias (NMB, &lt; 20%) is obtained in comparison to that from the &lt;em&gt;bottomup&lt;/em&gt; (37&amp;#8211;52%). 75&amp;#8211;100% of the observed all-day (daytime) mean BC concentration is simulated most of the times (&gt;80% of the number of stations data) for &lt;em&gt;Constrained&lt;/em&gt;, whereas, this being less frequent (&lt;50%) for the &lt;em&gt;Pku, Smog, Edgar&lt;/em&gt; and poor for &lt;em&gt;Cmip&lt;/em&gt;. The BC-AOD (0.04&amp;#8211;0.08) estimated from the &lt;em&gt;Constrained&lt;/em&gt; is 20&amp;#8211;50% higher than the &lt;em&gt;Pku&lt;/em&gt; and &lt;em&gt;Smog&lt;/em&gt;. Three main hotspot locations comprising of a large value of BC load are identified over the eastern, mideastern, and northern IGP. Assessment of the effect of BC burden on the wintertime radiative perturbation over the IGP shows that the presence of BC aerosols in the atmosphere enhances atmospheric heating by 2&amp;#8211;3 times more compared to that considering atmosphere without BC. Also, a net warming at the top of the atmosphere (TOA) by 10&amp;#8211;17 W m&lt;sup&gt;-&lt;/sup&gt;&lt;sup&gt;2&lt;/sup&gt; is noticed from the &lt;em&gt;Constrained&lt;/em&gt;, with the largest value estimated in and around megacities (Kolkata and Delhi) that extends to the eastern coast. This value is higher by 10&amp;#8211;20% than that from &lt;em&gt;Cmip&lt;/em&gt; over the IGP and by 2&amp;#8211;10% than that from &lt;em&gt;Smog&lt;/em&gt; over Delhi and eastern part of the IGP.&lt;/p&gt;


2021 ◽  
Vol 21 (10) ◽  
pp. 7671-7694
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in climatic impacts induced by black carbon (BC) from global and regional aerosol–climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution, specifically over the regions where the atmosphere is loaded with a large amount of BC, e.g. the Indo-Gangetic Plain (IGP) in the Indian subcontinent. Here we examine the wintertime direct radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1∘ × 0.1∘) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was assessed by executing five simulations: Constrained and bottomup (bottomup includes Smog, Cmip, Edgar, and Pku). These simulations respectively implement the recently estimated India-based observationally constrained BC emissions (Constrainedemiss) and the latest bottom-up BC emissions (India-based: Smog-India; global: Coupled Model Intercomparison Project phase 6 – CMIP6, Emission Database for Global Atmospheric Research-V4 – EDGAR-V4, and Peking University BC Inventory – PKU). The mean BC emission flux from the five BC emission inventory databases was found to be considerably high (450–1000 kg km−2 yr−1) over most of the IGP, with this being the highest (> 2500 kg km−2 yr−1) over megacities (Kolkata and Delhi). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from the Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulations with Constrainedemiss BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with bottom-up emissions. The high BC pollution covering the IGP region comprised a wintertime all-day (daytime) mean BC concentration and BC-AOD respectively in the range 14–25 µg m−3 (6–8 µg m−3) and 0.04–0.08 µg m−3 from the Constrained simulation. The simulated BC concentration and BC-AOD were inferred to be primarily sensitive to the change in BC emission strength over most of the IGP (including the megacity of Kolkata), but also to the transport of BC aerosols over megacity Delhi. Five main hotspot locations were identified in and around Delhi (northern IGP), Prayagraj–Allahabad–Varanasi (central IGP), Patna–Palamu (upper, lower, and mideastern IGP), and Kolkata (eastern IGP). The wintertime direct radiative perturbation due to BC aerosols from the Constrained simulation estimated the atmospheric radiative warming (+30 to +50 W m−2) to be about 50 %–70 % larger than the surface cooling. A widespread enhancement in atmospheric radiative warming due to BC by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of the atmosphere (TOA) of 10–15 W m−2, were noticed compared to the atmosphere without BC, for which a net cooling at the TOA was exhibited. These perturbations were the strongest around megacities (Kolkata and Delhi), extended to the eastern coast, and were inferred to be 30 %–50% lower from the bottomup than the Constrained simulation.


1972 ◽  
Vol 62 (5) ◽  
pp. 1119-1132 ◽  
Author(s):  
K. L. Kaila ◽  
V. K. Gaur ◽  
Hari Narain

Abstract Using the Kaila and Narain (1971) method, three quantitative seismicity maps have been prepared for the Indian subcontinent which are compared with regional tectonics. These are the A-value map, the b-value map and the return-period map for earthquakes with magnitude 6 and above where A and b are the constants in the cumulative regression curve represented by log N = A - bM. The A-value seismicity map shows that India can be divided into two broad seismic zones, the northern seismically highly active zone and the southern moderately active zone. In the northern active zone, a number of seismic highs have been delineated such as the Pamir high, the northwest-southeast trending Srinagar-Almora high, the Shillong massif high, the Arakan Yoma high and the West Pakistan highs. These seismic highs are consistent with the Himalayan tectonic trends. Contrary to this, two seismic highs fall in the Tibet plateau region which align transversely to the main Himalayan trend. In the southern moderately active zone, two seismic highs are clearly discernible, the east and the west coast high, the latter being seismically more active than the former. The least active zone encompasses the Vindhyan syncline and the areas of Delhi and Aravalli folding. Between this zone and the east coast high lies another moderately active zone which encloses the Godavari graben, western part of the Mahanadi graben and the Chattisgarh depression. The b-value seismicity map also demarcates the same active zones as are brought out on the A-value map. The return-period map of India for earthquakes with magnitude 6 and above shows a minimum return period of 100 years in the Pamirs, about 130 years in the various seismic highs in the northern active zone, 180 years on the west coast high, 200 years on the east coast high and about 230 years in the least active Vindhyan-Aravalli zone and the Hyderabad-Kurnool area. These quantitative seismicity maps are also compared with the seismic zoning map of Indian Standards Institution and seismicity maps of India prepared by other workers.


2018 ◽  
Vol 18 (23) ◽  
pp. 17669-17685 ◽  
Author(s):  
Aditya Vaishya ◽  
Surendran Nair Suresh Babu ◽  
Venugopalan Jayachandran ◽  
Mukunda M. Gogoi ◽  
Naduparambil Bharathan Lakshmi ◽  
...  

Abstract. Measurements of the vertical profiles of the optical properties (namely the extinction coefficient and scattering and absorption coefficients respectively σext ∕ σscat ∕ σabs) of aerosols have been made across the Indo-Gangetic Plain (IGP) using an instrumented aircraft operated from three base stations – Jodhpur (JDR), representing the semi-arid western IGP; Varanasi (VNS), the central IGP characterized by significant anthropogenic activities; and the industrialized coastal location in the eastern end of the IGP (Bhubaneswar, BBR) – just prior to the onset of the Indian summer monsoon. The vertical profiles depicted region-specific absorption characteristics, while the scattering characteristics remained fairly uniform across the region, leading to a west–east gradient in the vertical structure of single-scattering albedo (SSA). Integrated from near the ground to 3 km, the highest absorption coefficient and hence the lowest SSA occurred in the central IGP (Varanasi). Size distribution, inferred from the spectral variation of the scattering coefficient, showed a gradual shift from coarse-particle dominance in the western IGP to strong accumulation dominance in the eastern coast with the central IGP coming in between, arising from a change in the aerosol type from a predominantly natural (dust and sea salt) type in the western IGP to a highly anthropogenic type (industrial emissions, fossil fuel and biomass combustion) in the eastern IGP, with the central IGP exhibiting a mixture of both. Aerosol-induced short-wave radiative forcing, estimated using altitude-resolved SSA information, revealed significant atmospheric warming in the central IGP, while a top-of-atmosphere cooling is seen, in general, in the IGP. Atmospheric heating rate profiles, estimated using altitude-resolved SSA and column-averaged SSA, revealed considerable underestimation in the latter case, emphasizing the importance and necessity of having altitude-resolved SSA information as against a single value for the entire column.


2012 ◽  
Vol 30 (10) ◽  
pp. 1479-1493 ◽  
Author(s):  
P. Choudhry ◽  
A. Misra ◽  
S. N. Tripathi

Abstract. Moderate resolution imaging spectroradiometer (MODIS) sensors, onboard Terra and Aqua, have been observing the Earth since start of 2000 and mid 2002, respectively. The present study provides a comparison of Collection 5 (C005), aerosol optical depth (AOD) retrieved by MODIS, with AERONET-observed AOD over Kanpur (an urban site), Gandhi College (a rural site) and Nainital (a relatively clean site) in the Indo Gangetic Plain (IGP). The results show that at Kanpur, MODIS retrievals are well within the prelaunch uncertainty ± 0.05 ±0.15 τ, and a good correlation (R2 > 0.7 for both Terra and Aqua). Nainital also shows good retrieval (R2 > 0.8 for Terra and R2 > 0.68 for Aqua), as more than 66% of total collocations are within the prelaunch uncertainty. However, it is seen that there is significant overestimation in this case, especially in the months of winter. Gandhi College poses a challenge to MODIS retrieval, as here <57% of MODIS-retrieved AOD values lay within the prelaunch uncertainty and the correlation is very poor (R2 ~ 0.5 for Aqua and R2 ~ 0.4 for Terra); also there is persistent underestimation in this case. Small value of slope shows that assumed model results in underestimation, and large intercept values for the linear regression fit show that errors due to surface reflectance are high here. Our comparison shows that MODIS retrieval works well over Kanpur, and Nainital with winter as an exception. However, MODIS retrieval is poor for Gandhi College which is a rural area. The aerosol properties at Kanpur are currently used as representative of the entire subcontinent in the MODIS C005 algorithm, which is not an accurate assumption. The large variability in land use and climate over India makes it a site too complex for a single aerosol model to be used over the entire area. Therefore further study with as many sites as possible over the Indian subcontinent would help provide more realistic modeling for the Indian subcontinent.


1992 ◽  
Vol 43 (6) ◽  
pp. 1481 ◽  
Author(s):  
RK Nurthen ◽  
R Cameron ◽  
DA Briscoe

Tailor, Pomatomus saltatrix, from the eastern coast of Australia were sampled and typed for nine polymorphic gene loci, using allozyme electrophoresis. Tailor were also sampled from the western coast but were typed for only six of the same nine gene loci. East-coast samples did not differ significantly from each other, apart from the frequency of one allele at one gene locus, and are hence considered as one genetic stock. The west-coast tailor differed significantly from the east-coast tailor at two of the six gene loci and can be considered as a separate stock.


2020 ◽  
Author(s):  
Sanhita Ghosh ◽  
Shubha Verma ◽  
Jayanarayanan Kuttippurath ◽  
Laurent Menut

Abstract. To reduce the uncertainty in the black carbon (BC) induced climatic impacts from the global and regional aerosol-climate model simulations, it is a foremost requirement to improve the prediction of modelled BC distribution. And that specifically, over the regions where the atmosphere is loaded with a large amount of BC, e.g., the Indo-Gangetic plain (IGP) in the Indian subcontinent. Here we present the wintertime radiative perturbation due to BC with an efficiently modelled BC distribution over the IGP in a high-resolution (0.1° × 0.1°) chemical transport model, CHIMERE, implementing new BC emission inventories. The model efficiency in simulating the observed BC distribution was examined executing five simulations: Constrained and bottomup (Smog, Cmip, Edgar, Pku) implementing respectively, the recently estimated India-based constrained BC emission and the latest bottom-up BC emissions (India-based: Smog-India, and global: Coupled Model Intercomparison Project phase 6 (CMIP6), Emission Database for Global Atmospheric Research-V4 (EDGAR-V4) and Peking University BC Inventory (PKU)). A low estimated value of the normalised mean bias (NMB) and root mean square error (RMSE) from Constrained estimated BC concentration (NMB: < 17 %) and aerosol optical depth due to BC (BC-AOD) (NMB: 11 %) indicated that simulation with constrained BC emissions in CHIMERE could simulate the distribution of BC pollution over the IGP more efficiently than with the bottom-up. The large BC pollution covering the IGP region comprised of wintertime all-day (daytime) monthly mean BC concentration and BC-AOD from the Constrained, respectively, in the range 14–25 (6–8) µg m−3 and 0.04–0.08, with a strong correlation between the variance in BC emission and simulated BC mass concentration or BC-AOD. Five main hotspot locations were identified in and around Delhi (northern-IGP), Prayagraj (or Allahabad)-Varanasi (central-IGP), Patna-Palamu (upper/lower mideastern-IGP), and Kolkata (eastern-IGP). The wintertime radiative perturbation due to BC aerosols from the Constrained included a wide-spread enhancement in atmospheric radiative warming by 2–3 times and a reduction in surface cooling by 10 %–20 %, with net warming at the top of atmosphere (TOA) of 10–15 W m−2, compared to the atmosphere without BC, for which, a net cooling at the TOA was, although, exhibited. These perturbations were spotted being the strongest around megacities (Kolkata and Delhi), and were inferred as 30 %–50 % lower from the bottomup than the Constrained.


2003 ◽  
Vol 28 ◽  
Author(s):  
R. C. Patel ◽  
Yogesh Kumar

The post-major Himalayan tectonics is distinctly reflected on the present day topography of the Doon Valley. The photogeological characters and field study show that the Doon Valley is bounded by major faults. NE-dipping Main Boundary Thrust (MBT) surrounds it in the north, Mohand Thrust and Bhimgoda Thrust in the south, the Ganga Tear Fault in the east and the Yamuna Tear Fault in the west. Due to ongoing continental convergence of the Indian and Eurasian plates, the valley is tectonically unstable today. Vertical as well as horizontal movements are ongoing processes of the valley. The terraces along river valleys, bending of the river courses, tilting of the piedmonts, shifting of the river courses, overriding of the Lesser Himalayan rocks over the Doon Valley and Siwalik rocks over Indo-Gangetic plain are the consequence of it. Several lineaments, majorly longitudinal and transverse, are tearing up the Doon Valley. Out of them, some have segmented the recent Doon gravels, which reflect the Quaternary tectonics of the Doon valley. The probable cause of the Quaternary tectonics of the Doon Valley might be due to the northward pushing of the Delhi-Haridwar ridge.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Abin Thomas ◽  
Chandan Sarangi ◽  
Vijay P. Kanawade

AbstractIndian subcontinent is greatly vulnerable to air pollution, especially during the winter season. Here, we use 15 years (2003–2017) of satellite and model reanalysis datasets over India and adjoining Seas to estimate the trend in hazy days (i.e. days with high aerosol loading) during the dry winter season (November to February). The number of hazy days is increasing at the rate of ~2.6 days per year over Central India. Interestingly, this is higher than over the Indo-Gangetic Plain (~1.7 days/year), a well known global hotspot of particulate pollution. Consistent increasing trends in absorbing aerosols are also visible in the recent years. As a result, the estimated atmospheric warming trends over Central India are two-fold higher than that over Indo-Gangetic Plain. This anomalous increment in hazy days over Central India is associated with the relatively higher increase in biomass burning over the region. Moreover, the trend in aerosol loading over the Arabian Sea, which is located downwind to Central India, is also higher than that over the Bay of Bengal during the dry winter season. Our findings not only draw attention to the rapid deteriorating air quality over Central India, but also underline the significance of increasing biomass burning under the recent climate change.


2019 ◽  
Vol 19 (6) ◽  
pp. 3433-3445 ◽  
Author(s):  
Iris N. Dekker ◽  
Sander Houweling ◽  
Sudhanshu Pandey ◽  
Maarten Krol ◽  
Thomas Röckmann ◽  
...  

Abstract. The TROPOspheric Monitoring Instrument (TROPOMI), launched 13 October 2017, has been measuring carbon monoxide (CO) concentrations in the Earth's atmosphere since early November 2017. In the first measurements, TROPOMI was able to measure CO concentrations of the high-pollution event in India of November 2017. In this paper, we studied the extent of the pollution in India, comparing the TROPOMI CO with modeled data from the Weather Research and Forecasting model (WRF) to identify the most important sources contributing to the high pollution, both at ground level and in the total column. We investigated the period 11–19 November 2017. We found that residential and commercial combustion was a much more important source of CO pollution than the post-monsoon crop burning during this period, which is in contrast to what media suggested and some studies on aerosol emissions found. Also, the high pollution was not limited to Delhi and its direct neighborhood but the accumulation of pollution extended over the whole Indo-Gangetic Plain (IGP) due to the unfavorable weather conditions in combination with extensive emissions. From the TROPOMI data and WRF simulations, we observed a buildup of CO during 11–14 November and a decline in CO after 15 November. The meteorological conditions, characterized by low wind speeds and shallow atmospheric boundary layers, were most likely the primary explanation for the temporal accumulation and subsequent dispersion of regionally emitted CO in the atmosphere. This emphasizes the important role of atmospheric dynamics in determining the air quality conditions at ground level and in the total column. Due to its rapidly growing population and economy, India is expected to encounter similar pollution events more often in future post-monsoon and winter seasons unless significant policy measures are taken to reduce residential and commercial emissions.


Sign in / Sign up

Export Citation Format

Share Document