scholarly journals DO THE VISUAL COMPLEXITY ALGORITHMS MATCH THE GENERALIZATION PROCESS IN GEOGRAPHICAL DISPLAYS?

Author(s):  
A. Brychtová ◽  
A. Çöltekin ◽  
V. Pászto

In this study, we first develop a hypothesis that existing quantitative visual complexity measures will overall reflect the level of cartographic generalization, and test this hypothesis. Specifically, to test our hypothesis, we first selected common geovisualization types (i.e., cartographic maps, hybrid maps, satellite images and shaded relief maps) and retrieved examples as provided by Google Maps, OpenStreetMap and SchweizMobil by swisstopo. Selected geovisualizations vary in cartographic design choices, scene contents and different levels of generalization. Following this, we applied one of Rosenholtz et al.’s (2007) visual clutter algorithms to obtain quantitative visual complexity scores for screenshots of the selected maps. We hypothesized that visual complexity should be constant across generalization levels, however, the algorithm suggested that the complexity of small-scale displays (less detailed) is higher than those of large-scale (high detail). We also observed vast differences in visual complexity among maps providers, which we attribute to their varying approaches towards the cartographic design and generalization process. Our efforts will contribute towards creating recommendations as to how the visual complexity algorithms could be optimized for cartographic products, and eventually be utilized as a part of the cartographic design process to assess the visual complexity.

Author(s):  
A. Brychtová ◽  
A. Çöltekin ◽  
V. Pászto

In this study, we first develop a hypothesis that existing quantitative visual complexity measures will overall reflect the level of cartographic generalization, and test this hypothesis. Specifically, to test our hypothesis, we first selected common geovisualization types (i.e., cartographic maps, hybrid maps, satellite images and shaded relief maps) and retrieved examples as provided by Google Maps, OpenStreetMap and SchweizMobil by swisstopo. Selected geovisualizations vary in cartographic design choices, scene contents and different levels of generalization. Following this, we applied one of Rosenholtz et al.’s (2007) visual clutter algorithms to obtain quantitative visual complexity scores for screenshots of the selected maps. We hypothesized that visual complexity should be constant across generalization levels, however, the algorithm suggested that the complexity of small-scale displays (less detailed) is higher than those of large-scale (high detail). We also observed vast differences in visual complexity among maps providers, which we attribute to their varying approaches towards the cartographic design and generalization process. Our efforts will contribute towards creating recommendations as to how the visual complexity algorithms could be optimized for cartographic products, and eventually be utilized as a part of the cartographic design process to assess the visual complexity.


Author(s):  
V. G. Bondur ◽  
L. N. Zakharova ◽  
A. I. Zakharov

The monitoring results of the current state of landslide area on the Bureya River in 20182019 are given using images from synthetic aperture radars and optical sensors of Sentinel multi-satellite system. Differential radar interferometry technique allowed to reveal the stability of the landslide surface in the first four months after the landslide and since the end of July 2019. Small-scale dynamics of the surface within the landslide circus was detected. It is shown that the interferometric technique is inapplicable for the observation of the large-scale modifications of the shoreline unlike the optical images where the effects of the collapse of the shoreline fragments and shoreline flooding were clearly observed compared also with radar amplitude images. The ongoing landslide activity within the landslide circus and the coastline collapse area was detected using satellite images. It requires the establishment of continuous monitoring of this and other dangerous landslide zones on Bureya River.


1981 ◽  
Vol 61 (4) ◽  
pp. 535-551 ◽  
Author(s):  
K. W. G. VALENTINE

It is becoming common for soil surveys to be made of the same area at different intensities and published at different scales. The principles of cartographic generalization are discussed that control the relationships between the map units and delineations on maps made from such surveys. A study of two sets of maps showed that almost no lines were coincident. Up to 20% of the small scale delinations could be ’inliers’ of different soils and about 15% of the large scale delineations would be outside their small scale equivalents. The same discrepancies are to be expected between large scale soil maps and the smaller scale maps of physiography or vegetation that are often used to stratify soils. Reasons for these discrepancies are discussed under the headings of simplification and classification. Recommendations arc made to guide the preparation of maps and legends for different intensities and scales of survey in the same area. These recommendations have practical implications for the planning of surveys and the designs of computer-based autocartography systems.


2020 ◽  
Vol 9 (6) ◽  
pp. 388
Author(s):  
Bin Jiang ◽  
Terry Slocum

The Earth’s surface or any territory is a coherent whole or subwhole, in which the notion of “far more small things than large ones” recurs at different levels of scale ranging from the smallest of a couple of meters to the largest of the Earth’s surface or that of the territory. The coherent whole has the underlying character called wholeness or living structure, which is a physical phenomenon pervasively existing in our environment and can be defined mathematically under the new third view of space conceived and advocated by Christopher Alexander: space is neither lifeless nor neutral, but a living structure capable of being more alive or less alive. This paper argues that both the map and the territory are a living structure, and that it is the inherent hierarchy of “far more smalls than larges” that constitutes the foundation of maps and mapping. It is the underlying living structure of geographic space or geographic features that makes maps or mapping possible, i.e., larges to be retained, while smalls to be omitted in a recursive manner (Note: larges and smalls should be understood broadly and wisely, in terms of not only sizes, but also topological connectivity and semantic meaning). Thus, map making is largely an objective undertaking governed by the underlying living structure, and maps portray the truth of the living structure. Based on the notion of living structure, a map can be considered to be an iterative system, which means that the map is the map of the map of the map, and so on endlessly. The word endlessly means continuous map scales between two discrete ones, just as there are endless real numbers between 1 and 2. The iterated map system implies that each of the subsequent small-scale maps is a subset of the single large-scale map, not a simple subset but with various constraints to make all geographic features topologically correct.


1992 ◽  
Vol 238 ◽  
pp. 325-336 ◽  
Author(s):  
M. Germano

Explicit or implicit filtered representations of chaotic fields like spectral cut-offs or numerical discretizations are commonly used in the study of turbulence and particularly in the so-called large-eddy simulations. Peculiar to these representations is that they are produced by different filtering operators at different levels of resolution, and they can be hierarchically organized in terms of a characteristic parameter like a grid length or a spectral truncation mode. Unfortunately, in the case of a general implicit or explicit filtering operator the Reynolds rules of the mean are no longer valid, and the classical analysis of the turbulence in terms of mean values and fluctuations is not so simple.In this paper a new operatorial approach to the study of turbulence based on the general algebraic properties of the filtered representations of a turbulence field at different levels is presented. The main results of this analysis are the averaging invariance of the filtered Navier—Stokes equations in terms of the generalized central moments, and an algebraic identity that relates the turbulent stresses at different levels. The statistical approach uses the idea of a decomposition in mean values and fluctuations, and the original turbulent field is seen as the sum of different contributions. On the other hand this operatorial approach is based on the comparison of different representations of the turbulent field at different levels, and, in the opinion of the author, it is particularly fitted to study the similarity between the turbulence at different filtering levels. The best field of application of this approach is the numerical large-eddy simulation of turbulent flows where the large scale of the turbulent field is captured and the residual small scale is modelled. It is natural to define and to extract from the resolved field the resolved turbulence and to use the information that it contains to adapt the subgrid model to the real turbulent field. Following these ideas the application of this approach to the large-eddy simulation of the turbulent flow has been produced (Germano et al. 1991). It consists in a dynamic subgrid-scale eddy viscosity model that samples the resolved scale and uses this information to adjust locally the Smagorinsky constant to the local turbulence.


2020 ◽  
Author(s):  
Heido Trofimov ◽  
Velle Toll

<p>Aerosols offset poorly quantified fraction of anthropogenic greenhouse gas warming, whereas the aerosol impact on clouds is the most uncertain mechanism of anthropogenic climate forcing. In this research, we extend satellite observations of polluted cloud tracks from Toll et al. (2019, Nature, https://doi.org/10.1038/s41586-019-1423-9) with analysis of larger scale polluted cloud areas detected in MODerate-resolution Imaging Spectroradiometer satellite images. We demonstrate that large-scale anthropogenic aerosol-induced cloud perturbations exist at various major industrial aerosol source regions. The areal extent of the polluted cloud areas detected in MODIS satellite images extended to hundreds by hundreds of kilometres. Polluted clouds detected in satellite images in the global anthropogenic air pollution hot spot of Norilsk, Russia, and in other regions show close compensation between aerosol-induced cloud water increases and decreases. On average, there is relatively weak decrease in cloud water in the large areas with strong decreases in cloud droplet radii. This is in very good agreement with previous results based on small-scale polluted cloud tracks (Toll et al., 2019) and strongly disagrees with unidirectionally increased liquid water path in global climate models.</p>


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 805
Author(s):  
Wenya Gu ◽  
Xiaochen Zhu ◽  
Xiangrui Meng ◽  
Xinfa Qiu

Terrain plays an important role in the formation, development and distribution of local precipitation and is a major factor leading to locally abnormal weather in weather systems. Although small-scale topography has little influence on the spatial distribution of precipitation, it interferes with precipitation fitting. Due to the arbitrary combination of small, medium and large-scale terrain, complex terrain distribution is formed, and small-scale terrain cannot be clearly defined and removed. Based on the idea of bidimensional empirical mode decomposition (BEMD), this paper extracts small-scale terrain data layer by layer to smooth the terrain and constructs a macroterrain model for different scales in Central China. Based on the precipitation distribution model using multiple regression, precipitation models (B0, B1, B2 and B3) of different scales are constructed. The 18-year monthly average precipitation data of each station are compared with the precipitation simulation results under different scales of terrain and TRMM precipitation data, and the influence of different levels of small-scale terrain on the precipitation distribution is analysed. The results show that (1) in Central China, the accuracy of model B2 is much higher than that of TRMM model A and monthly precipitation model B0. The comprehensive evaluation indexes are increased by 3.31% and 1.92%, respectively. (2) The influence of different levels of small-scale terrain on the precipitation distribution is different. The first- and second-order small-scale terrain has interference effects on precipitation fitting, and the third-order small-scale terrain has an enhancement effect on precipitation. However, the effect of small-scale topography on the precipitation distribution is generally reflected as interference.


Author(s):  
M. Modiri ◽  
M. Mohebbi ◽  
M. Masoumi ◽  
H. Khanlu ◽  
A. Eftekhari

Cartographic maps are representations of the Earth upon a flat surface in the smaller scale than it’s true. Large scale maps cover relatively small regions in great detail and small scale maps cover large regions such as nations, continents and the whole globe. Logical connection between the features and scale map must be maintained by changing the scale and it is important to recognize that even the most accurate maps sacrifice a certain amount of accuracy in scale to deliver a greater visual usefulness to its user. Cartographic generalization, or map generalization, is the method whereby information is selected and represented on a map in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic details. Due to the problems facing small-scale map production process and the need to spend time and money for surveying, today’s generalization is used as executive approach. The software is proposed in this paper that converted various data and information to certain Data Model. This software can produce generalization map according to base map using the existing algorithm. Planimetric generalization algorithms and roles are described in this article. Finally small-scale maps with 1:100,000, 1:250,000 and 1:500,000 scale are produced automatically and they are shown at the end.


2000 ◽  
Vol 45 (4) ◽  
pp. 396-398
Author(s):  
Roger Smith
Keyword(s):  

2020 ◽  
Vol 1 (1) ◽  
pp. 1-10
Author(s):  
Evi Rahmawati ◽  
Irnin Agustina Dwi Astuti ◽  
N Nurhayati

IPA Integrated is a place for students to study themselves and the surrounding environment applied in daily life. Integrated IPA Learning provides a direct experience to students through the use and development of scientific skills and attitudes. The importance of integrated IPA requires to pack learning well, integrated IPA integration with the preparation of modules combined with learning strategy can maximize the learning process in school. In SMP 209 Jakarta, the value of the integrated IPA is obtained from 34 students there are 10 students completed and 24 students are not complete because they get the value below the KKM of 68. This research is a development study with the development model of ADDIE (Analysis, Design, Development, Implementation, and Evaluation). The use of KPS-based integrated IPA modules (Science Process sSkills) on the theme of rainbow phenomenon obtained by media expert validation results with an average score of 84.38%, average material expert 82.18%, average linguist 75.37%. So the average of all aspects obtained by 80.55% is worth using and tested to students. The results of the teacher response obtained 88.69% value with excellent criteria. Student responses on a small scale acquired an average score of 85.19% with highly agreed criteria and on the large-scale student response gained a yield of 86.44% with very agreed criteria. So the module can be concluded receiving a good response by the teacher and students.


Sign in / Sign up

Export Citation Format

Share Document