scholarly journals On the use of the calibration-based approach for debris-flow forward-analyses

2010 ◽  
Vol 10 (5) ◽  
pp. 1009-1019 ◽  
Author(s):  
M. Pirulli

Abstract. In the present paper the problem of modeling the propagation of potential debris flows is tackled resorting to a numerical approach. In particular, numerical analyses are carried out with the RASH3D code, based on a single-phase depth-averaged continuum mechanics approach. Since each numerical analysis requires the selection of a rheology and the setting of the rheological input parameters, a calibration-based approach, where the rheological parameters are constrained by systematic adjustment during trial-and-error back-analysis of full-scale events, has been assumed. The back-analysis of a 1000 m3 debris flow, located at Tate's Cairn, Hong Kong, and the forward-analysis of a 10 000 m3 potential debris flow, located in the same basin have been used to investigate the transferability of back-calculated rheological parameters from one case to another. Three different rheologies have been tested: Frictional, Voellmy and Quadratic. From obtained results it emerges that 1) the back-calculation of a past event with different rheologies can help in selecting the rheology that better reproduces the runout of the analysed event and, on the basis of that selection, can give some indication about the dynamics of the investigated flow, 2) the use of back-calculated parameters for forward purposes requires that past and potential events have similar characteristics, some of which are a function of the assumed rheology. Among tested rheologies, it is observed that the Quadratic rheology is more influenced by volume size than Frictional and Voellmy rheologies and consequently its application requires that events are also similar in volume.

2018 ◽  
Vol 18 (2) ◽  
pp. 555-570 ◽  
Author(s):  
Raquel Melo ◽  
Theo van Asch ◽  
José L. Zêzere

Abstract. Only two months after a huge forest fire occurred in the upper part of a valley located in central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economic damage, although no lives were lost. The present research aims to simulate the run-out of two debris flows that occurred during the event as well as to calculate via back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. Afterwards, the model was validated using 32 debris flows triggered during the same event that were not considered for calibration. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flow run-out on the basin scale. The results were confronted with the existing buildings exposed in the study area and the worst-case scenario showed a potential inundation that may affect 345 buildings. In addition, six streams where debris flow occurred in the past and caused material damage and loss of lives were identified.


2017 ◽  
Author(s):  
Raquel Melo ◽  
Theo van Asch ◽  
José L. Zêzere

Abstract. Only two months after a huge wildfire occurred in the upper part of a valley located in Central Portugal, several debris flows were triggered by intense rainfall. The event caused infrastructural and economical damage, although no life was lost. The present research aims to simulate the run-out of two debris flows occurred during the event as well as to calculate by back-analysis the rheological parameters and the excess rain involved. Thus, a dynamic model was used, which integrates surface runoff, concentrated erosion along the channels, propagation and deposition of flow material. The rheological and entrainment parameters obtained for the most accurate simulation were then used to perform three scenarios of debris flows run-out at the basin scale. Due to the lack of quantitative information to validate these models, the results were compared with historical references of debris flow events in the study area. Six streams were identified, where debris flows occurred in the past and caused material damage and loss of lives. The worst-case scenario carried out at the basin scale shows a potential inundation that may affect 345 buildings at the present day.


2021 ◽  
Vol 21 (10) ◽  
pp. 3015-3029
Author(s):  
Ivo Janos Fustos-Toribio ◽  
Bastian Morales-Vargas ◽  
Marcelo Somos-Valenzuela ◽  
Pablo Moreno-Yaeger ◽  
Ramiro Muñoz-Ramirez ◽  
...  

Abstract. Debris flow generation in volcanic zones in the southern Andes has not been widely studied, despite the enormous economic and infrastructure damage that these events can generate. The present work contributes to the understanding of these dynamics based on a study of the 2017 Petrohué debris flow event from two complementary points of view. First, a comprehensive field survey allowed us to determine that a rockfall initiated the debris flow due to an intense rainfall event. The rockfall lithology corresponds to lava blocks and autobrecciated lavas, predominantly over 1500 m a.s.l. Second, the process was numerically modelled and constrained by in situ data collection and geomorphological mapping. The event was studied by back analysis using the height of flow measured on Route CH-255 with errors of 5 %. Debris flow volume has a high sensitivity with the initial water content in the block fall zone, ranging from 4.7×105 up to 5.5×105 m3, depending on the digital elevation model (DEM) used. Therefore, debris flow showed that the zone is controlled by the initial water content available previous to the block fall. Moreover, our field data suggest that future debris flows events can take place, removing material from the volcanic edifice. We conclude that similar events could occur in the future and that it is necessary to increase the mapping of zones with autobrecciated lava close to the volcano summit. The study contributes to the understanding of debris flows in the southern Andes since the Osorno volcano shares similar features with other stratovolcanoes in the region.


2021 ◽  
Author(s):  
Marc Peruzzetto ◽  
Clara Levy ◽  
Yannick Thiery ◽  
Gilles Grandjean ◽  
Anne Mangeney ◽  
...  

<p>This work focuses on the use of thin-layer models for simulating fast gravitational flows for hazard assessment. Such simulations are sometimes difficult to carry out because of the uncertainty on initial conditions and on simulation parameters. In this study, we aggregate various field data to constrain realistic initial conditions and to calibrate the model parameters. By using the SHALTOP numerical code, we choose a simple and empirical rheology to model the flow (no more than two parameters), but we model more finely the geometrical interactions between the flow and the topography. We can thus model both a rock avalanche, and the subsequent remobilization of the deposits as a high discharge debris flow.</p><p>Using the Prêcheur river catchment (Martinique, Lesser Antilles) as a case study, we focus on extreme events with a high potential to impact populations and infrastructures. We use geological and geomorphological data, topographic surveys, seismic recordings and granulometric analysis to define realistic simulation scenarios and determine the main characteristics of documented events. The latter are then reproduced to calibrate rheological parameters. With a single rheological parameter and the Coulomb rheology, we thus model the emplacement and main dynamic characteristics of a recent rock avalanche, as well as the travel duration and flooded area of a documented high discharge debris flow. Then, in a forward prediction simulation, we model a possible 1.9x10<sup>6 </sup>m<sup>3</sup> rock avalanche, and the instantaneous remobilization of the resulting deposits as a high-discharge debris flow. We show that successive collapses allow to better reproduce the dynamics of the rock avalanche, but do not change the geometry of the final deposits, and thus do not influence the initial conditions of the subsequent debris flow simulation. A progressive remobilization of the materials slows down the debris flow and limits overflow, in comparison to instantaneous release. However, we show that high discharge debris flows, such as the one considered for model calibration, are better reproduced with an instantaneous initiation. The range of travel times measured for other significant debris flows in the Pr\^echeur river is consistent with our simulation results, with various rheological parameters and the Coulomb or Voellmy rheology.</p>


2008 ◽  
Vol 8 (4) ◽  
pp. 961-971 ◽  
Author(s):  
M. Pirulli ◽  
G. Sorbino

Abstract. In the present paper some of the problems related to the application of the continuum mechanics modelling to debris flow runout simulation are discussed. Particularly, a procedure is proposed to face the uncertainties in the choice of a numerical code and in the setting of rheological parameter values that arise when the prediction of a debris flow propagation is required. In this frame, the two codes RASH3D and FLO2D are used to numerically analyse the propagation of potential debris flows affecting two study sites in Southern Italy. For these two study sites, a lack in information prevents that the rheological parameters can be obtained from the back analysis of similar well documented debris flow events in the area. As a prediction of the possible runout area is however required by decision makers, an alternative approach based on the analysis of the alluvial fans existing at the toe of the two studied basins is proposed to calibrate rheological parameters on the safe side. From the comparison of the results obtained with RASH3D (where a Voellmy and a Quadratic rheologies are implemented) and FLO2D (where a Quadratic rheology is implemented) it emerges that, for the two examined cases, numerical analyses carried out with RASH3D assuming a Voellmy rheology can be considered on the safe side respect to those carried out with a Quadratic rheology.


Geosciences ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 64 ◽  
Author(s):  
Nejc Bezak ◽  
Jošt Sodnik ◽  
Matjaž Mikoš

Debris flows with different magnitudes can have a large impact on debris fan characteristics such as height or slope. Moreover, knowledge about the impact of random sequences of debris flows of different magnitudes on debris fan properties is sparse in the literature and can be improved using numerical simulations of debris fan formation. Therefore, in this paper we present the results of numerical simulations wherein we investigated the impact of a random sequence of debris flows on torrential fan formation, where the total volume of transported debris was kept constant, but different rheological properties were used. Overall, 62 debris flow events with different magnitudes from 100 m3 to 20,000 m3 were selected, and the total volume was approximately 225,000 m3. The sequence of these debris flows was randomly generated, and selected debris fan characteristics after the 62 events were compared. For modeling purposes, we applied the Rapid Mass Movement Simulations (RAMMS) software and its debris flow module (RAMMS-DF). The modeling was carried out using (a) real fan topography from an alpine environment (i.e., an actual debris fan in north-west (NW) Slovenia formed by the Suhelj torrent) and (b) an artificial surface with a constant slope. Several RAMMS model parameters were tested. The simulation results confirm that the random sequence of debris flow events has only some minor effects on the fan formation (e.g., slope, maximum height), even when changing debris flow rheological properties in a wide range. After the 62 events, independent of the selected sequence of debris flows, the final fan characteristics were not significantly different from each other. Mann–Whitney (MW) tests and t-tests were used for this purpose, and the selected significance level was 0.05. Moreover, this conclusion applies for artificial and real terrain and for a wide range of tested RAMMS model rheological parameters. Further testing of the RAMMS-DF model in real situations is proposed in order to better understand its applicability and limitations under real conditions for debris flow hazard assessment or the planning of mitigation measures.


2020 ◽  
Author(s):  
Rajesh Kumar Dash ◽  
Debi Prasanna Kanungo

<p>Debris flows are one of the most frequently occurring and destructive hazards in Indian Himalayas which are often initiated by rainfall.  To minimize the losses due to the destructive power of the debris flows, demarcation of debris flow risk zones is an effective practice for risk reduction. In the present study, site specific debris flow risk assessment has been carried out based upon runout behaviour modeling. Tangni debris flow is an active debris flow in the Chamoli district of Garhwal Himalayas, India which is responsible for disrupting the traffic by blocking the road for days. This debris flow is repetitive in nature and occurs many a times every year in the monsoon during the months between June to September. The Tangni debris flow is categorized as a hill slope debris flow and the failure is considered as a block failure. Runout modeling of Tangni debris flow has been carried out using a Voellmy approach based continuum model. Quantitative information on debris flow intensity parameters such as flow velocity, height and pressure was obtained from the numerical simulation. The calibration of model input parameters was done by back analysis of an event from a particular source area that took place in 2013. Depending upon the amount of materials present in different source areas in the entire source zone and using the calibrated model input parameters, several simulations were performed to assess the flow behaviour of at different possible scenarios. Thus, Tangni debris flow risk assessment has been carried out based on its runout effect modeling. This study revealed that there may be a possibility of damming of river as well as blocking of the National Highway which are located at the downstream of the debris flow.</p><p>Key words:  Debris flow, Risk assessment, Runout modeling, Garhwal Himalayas, Voellmy model</p>


2021 ◽  
Author(s):  
Ivo Janos Fustos-Toribio ◽  
Bastian Morales-Vargas ◽  
Marcelo Somos-Valenzuela ◽  
Pablo Moreno-Yaeger ◽  
Ramiro Muñoz-Ramirez ◽  
...  

Abstract. Debris flow generation on volcanic zones at the Southern Andes has not widely studied, despite the enormous economic and infrastructure damage that these events can generate. The present work contributes to the understanding of these dynamics based on a study of the 2017 Petrohué debris flow event from two complementary points of view. First, a comprehensive field survey allowed to delimitate that a rockfall initiated the debris-flow due to intense rainfall event. The rockfall lithology corresponds to lava blocks and autobrecciated lavas, predominantly over 1500 m.a.s.l. Second, the process was numerically modelled and constrained by in situ data collection and geomorphological mapping. The event was studied by back analysis using the height of flow measured in road CH-255 with errors of 5%. Debris flow volume has a high sensitivity with the initial water content in the block fall zone, ranging between 4.7x105 up to 5.5x105 m3, depending on the digital elevation model (DEM) used. Therefore, debris flow showed that the zone is controlled by the initial water content available previous to the block fall. Moreover, our field data suggest that future debris flows events can take place removing material from the volcanic edifice. We conclude that similar events could occur in the future and that it is necessary to increase the mapping of zones with autobrecciated lava close to the volcano summit. Finally, the study contributes to understanding debris flows in the Southern Andes since the Osorno volcano shares similar features with other stratovolcanoes in the region.


2010 ◽  
Vol 10 (5) ◽  
pp. 989-997 ◽  
Author(s):  
M. A. Boniello ◽  
C. Calligaris ◽  
R. Lapasin ◽  
L. Zini

Abstract. To set an approach for the future territorial planning, the Geological Survey of Friuli Venezia Giulia Region, through the researchers of Trieste University, started a program of debris-flow risk analysis using Flo-2D software as tool to delimit the hazardous areas. In the present paper, as a case study, a debris flow, called Fella sx, occurring in a torrent catchment was analyzed. The choice was due to the abundance of information about past events, inundated areas, rain fall, geology and to its representativeness. An initial back-analysis investigation identified a couple of representative rheological parameters. Riverbed samples were collected, sieve analyses were performed and rheological tests were carried out on the fraction finer than 0.063 mm using a rotationally controlled stress rehometer equipped with the serrated parallel plate geometry. The shear dependent behaviour was examined at different concentrations ranging from 33 to 48%, by weight. Viscosity data treatment was performed to determine the most suitable rheological model to provide the best approximation of the debris-flow behaviour. The rheological parameters, derived from experimental data, were used and compared with those obtained through the back-analysis and with the real inundated area. Data obtained through rheological analysis are useful in constructing scenarios of future events where no data for back-analysis are available.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7890
Author(s):  
Shin-Kyu Choi ◽  
Tae-Hyuk Kwon

Debris flows are capable of flowing with high velocities and causing significant economic and infrastructural damage. As a hazard mitigation measure, physical barriers are frequently installed to dissipate the energy of debris flows. However, there is a lack of understanding on how barriers affect and interact with debris-flow behavior (e.g., velocity and volume). This study investigated the changes in debris-flow characteristics depending on the installation location of barriers. Mt. Woomyeon, which is located in Seoul, Korea, was the site of a major debris-flow event in 2011. This study modeled this event using DAN3D, numerical software based on smoothed particle hydrodynamics (SPH). Our numerical approach assessed changes in debris-flow behavior, including velocity and volume, as the debris flow interacts with four closed-type barriers installed at separate points along the flow path. We used DAN3D to model the barriers via terrain elevation modifications. The presence of a closed-type barrier results in the reduction in the debris-flow velocity and volume compared to when no barrier is present. Most notably, the closer a barrier is installed to the debris source, the greater the velocity decrease. By contrast, a barrier that is constructed further downstream allows the debris flow to undergo entrainment-driven growth before confronting the barrier, resulting in a larger debris deposition volume that can often cause overflow, as shown at our particular study site. The presented results highlight the effectiveness of barriers as a method of hazard mitigation by providing insight into how such installations can alter debris-flow behavior. In addition, the findings can provide a reference for future debris-flow barrier designs, increasing the effectiveness and efficiency of such barrier systems.


Sign in / Sign up

Export Citation Format

Share Document