scholarly journals Coupled atmosphere ocean climate model simulations in the Mediterranean region: effect of a high-resolution marine model on cyclones and precipitation

2013 ◽  
Vol 13 (6) ◽  
pp. 1567-1577 ◽  
Author(s):  
A. Sanna ◽  
P. Lionello ◽  
S. Gualdi

Abstract. In this study we investigate the importance of an eddy-permitting Mediterranean Sea circulation model on the simulation of atmospheric cyclones and precipitation in a climate model. This is done by analyzing results of two fully coupled GCM (general circulation models) simulations, differing only for the presence/absence of an interactive marine module, at very high-resolution (~ 1/16°), for the simulation of the 3-D circulation of the Mediterranean Sea. Cyclones are tracked by applying an objective Lagrangian algorithm to the MSLP (mean sea level pressure) field. On annual basis, we find a statistically significant difference in vast cyclogenesis regions (northern Adriatic, Sirte Gulf, Aegean Sea and southern Turkey) and in lifetime, giving evidence of the effect of both land–sea contrast and surface heat flux intensity and spatial distribution on cyclone characteristics. Moreover, annual mean convective precipitation changes significantly in the two model climatologies as a consequence of differences in both air–sea interaction strength and frequency of cyclogenesis in the two analyzed simulations.

2020 ◽  
Author(s):  
Isabella Scroccaro ◽  
Marco Zavatarelli ◽  
Tomas Lovato

<p>A high resolution three-dimensional (physical-biogeochemical) numerical model of the Northern Adriatic Sea has been implemented by coupling the European general circulation model - NEMO (Nucleus for European Modeling of the Ocean, https://www.nemo-ocean.eu/), with the marine biogeochemical model BFM (Biogeochemical Flux Model, bfm-community.eu/).</p><p>The modeling system is implemented with a horizontal resolution of about 800 m and a vertical resolution of 2 m, in z coordinates. The NEMO model is off-line nested at its open boundary with the Mediterranean Sea physical model of the Copernicus Marine Environment Monitoring Service (CMEMS, http://marine.copernicus.eu/).</p><p>The BFM component of the modeling system now includes a detailed and explicit representation of the benthic biogeochemical cycling (benthic fauna, organic matter, nutrients), as well as the dynamics of the benthic-pelagic processes.</p><p>The inclusion of the benthic dynamics in the 3D biogeochemical modeling of a shallow coastal basin, such as the Northern Adriatic Sea, represents an innovative application in the field of coastal and shelf biogeochemistry, since benthic biogeochemical processes can significantly constrain the coastal environmental dynamics.</p><p>Simulations have been performed in hindcasting mode with interannually varying physical (surface heat and water fluxes, including river runoff) and biogeochemical (river nutrient load) forcing. Results are validated against available observations from in situ and satellite platforms for sea surface temperatures, chlorophyll-a and dissolved inorganic nutrients, in order to explore the sensitivity of the pelagic environment to the inclusion of an explicit benthic dynamics and to evaluate issues related to model coupling and error/prediction limits.</p><p>The study is carried out in the framework of the European Project H2020 "ODYSSEA" (Operating a network of integrated observatory systems in the Mediterranean SEA, http://odysseaplatform.eu/), with the final goal to build an on-line forecasting modeling system of the Northern Adriatic Sea.</p>


2011 ◽  
Vol 11 (9) ◽  
pp. 25205-25261 ◽  
Author(s):  
A. Pozzer ◽  
A. de Meij ◽  
K. J. Pringle ◽  
H. Tost ◽  
U. M. Doering ◽  
...  

Abstract. The new high resolution global anthropogenic emission inventory (EDGAR-CIRCE) of gas and aerosol pollutants has been incorporated in the chemistry general circulation model EMAC (ECHAM5/MESSy Atmospheric Chemistry). A high horizontal resolution simulation is performed for the years 2005–2008 to evaluate the capability of the model and the emissions to reproduce observed aerosol concentrations and aerosol optical depth (AOD) values. Model output is compared with observations from different measurement networks (CASTNET, EMEP and EANET) and AODs from remote sensing instruments (MODIS and MISR). The model reproduces the main spatial and temporal atmospheric features of the sulfate, ammonium and nitrate aerosol distributions. A good spatial agreement of the distribution of sulfate and ammonium aerosol is found when compared to observations, while calculated nitrate aerosol concentrations show some discrepancies. The simulated temporal development of the inorganic aerosols is in line with measurements of sulfate and nitrate aerosol, while for ammonium aerosol some deviations from observations occur over the USA. The calculated AODs agree well with the satellite observations in most regions, while a negative bias is found for the equatorial area and in the dust outflow regions (i.e. Central Atlantic and Northern Indian Ocean), due to an underestimation of biomass burning and aeolian dust emissions, respectively.


2017 ◽  
Vol 10 (4) ◽  
pp. 1423-1445 ◽  
Author(s):  
Gianpiero Cossarini ◽  
Stefano Querin ◽  
Cosimo Solidoro ◽  
Gianmaria Sannino ◽  
Paolo Lazzari ◽  
...  

Abstract. In this paper, we present a coupling scheme between the Massachusetts Institute of Technology general circulation model (MITgcm) and the Biogeochemical Flux Model (BFM). The MITgcm and BFM are widely used models for geophysical fluid dynamics and for ocean biogeochemistry, respectively, and they benefit from the support of active developers and user communities. The MITgcm is a state-of-the-art general circulation model for simulating the ocean and the atmosphere. This model is fully 3-D (including the non-hydrostatic term of momentum equations) and is characterized by a finite-volume discretization and a number of additional features enabling simulations from global (O(107) m) to local scales (O(100) m). The BFM is a biogeochemical model based on plankton functional type formulations, and it simulates the cycling of a number of constituents and nutrients within marine ecosystems. The online coupling presented in this paper is based on an open-source code, and it is characterized by a modular structure. Modularity preserves the potentials of the two models, allowing for a sustainable programming effort to handle future evolutions in the two codes. We also tested specific model options and integration schemes to balance the numerical accuracy against the computational performance. The coupling scheme allows us to solve several processes that are not considered by each of the models alone, including light attenuation parameterizations along the water column, phytoplankton and detritus sinking, external inputs, and surface and bottom fluxes. Moreover, this new coupled hydrodynamic–biogeochemical model has been configured and tested against an idealized problem (a cyclonic gyre in a mid-latitude closed basin) and a realistic case study (central part of the Mediterranean Sea in 2006–2012). The numerical results consistently reproduce the interplay of hydrodynamics and biogeochemistry in both the idealized case and Mediterranean Sea experiments. The former reproduces correctly the alternation of surface bloom and deep chlorophyll maximum dynamics driven by the seasonal cycle of winter vertical mixing and summer stratification; the latter simulates the main basin-wide and mesoscale spatial features of the physical and biochemical variables in the Mediterranean, thus demonstrating the applicability of the new coupled model to a wide range of ocean biogeochemistry problems.


Ocean Science ◽  
2009 ◽  
Vol 5 (4) ◽  
pp. 461-473 ◽  
Author(s):  
P. Oddo ◽  
M. Adani ◽  
N. Pinardi ◽  
C. Fratianni ◽  
M. Tonani ◽  
...  

Abstract. A new numerical general circulation ocean model for the Mediterranean Sea has been implemented nested within an Atlantic general circulation model within the framework of the Marine Environment and Security for the European Area project (MERSEA, Desaubies, 2006). A 4-year twin experiment was carried out from January 2004 to December 2007 with two different models to evaluate the impact on the Mediterranean Sea circulation of open lateral boundary conditions in the Atlantic Ocean. One model considers a closed lateral boundary in a large Atlantic box and the other is nested in the same box in a global ocean circulation model. Impact was observed comparing the two simulations with independent observations: ARGO for temperature and salinity profiles and tide gauges and along-track satellite observations for the sea surface height. The improvement in the nested Atlantic-Mediterranean model with respect to the closed one is particularly evident in the salinity characteristics of the Modified Atlantic Water and in the Mediterranean sea level seasonal variability.


2003 ◽  
Vol 21 (1) ◽  
pp. 221-236 ◽  
Author(s):  
G. Zodiatis ◽  
R. Lardner ◽  
A. Lascaratos ◽  
G. Georgiou ◽  
G. Korres ◽  
...  

Abstract. A high resolution nested flow model for the coastal, shelf and open sea areas of the Cyprus Basin, NE Levantine, eastern Mediterranean Sea is implemented to fulfil the objectives of the Mediterranean Forecasting System Pilot Project, funded by the EU. The Cyprus coastal ocean model is nested entirely within a coarse regional grid model of the eastern Mediterranean Sea, using the MODB climatology for initialisation and the ECMWF perpetual year surface forcing. The nested simulations of the Cyprus model were able to reproduce, with greater detail, flow features similar to those of the coarse grid regional model. The project results show the feasibility of the approach for the development of an operational forecasting system in the Mediterranean Sea, particularly in the Cyprus coastal/shelf sea area. Key words. Oceanography: general (descriptive and regional oceanography; numerical modelling) Oceanography: physical (general circulation)


2011 ◽  
Vol 279 (1726) ◽  
pp. 129-138 ◽  
Author(s):  
Silvia Casabianca ◽  
Antonella Penna ◽  
Elena Pecchioli ◽  
Antoni Jordi ◽  
Gotzon Basterretxea ◽  
...  

The toxin-producing microbial species Alexandrium minutum has a wide distribution in the Mediterranean Sea and causes high biomass blooms with consequences on the environment, human health and coastal-related economic activities. Comprehension of algal genetic differences and associated connectivity is fundamental to understand the geographical scale of adaptation and dispersal pathways of harmful microalgal species. In the present study, we combine A. minutum population genetic analyses based on microsatellites with indirect connectivity ( C i ) estimations derived from a general circulation model of the Mediterranean sea. Our results show that four major clusters of genetically homogeneous groups can be identified, loosely corresponding to four regional seas: Adriatic, Ionian, Tyrrhenian and Catalan. Each of the four clusters included a small fraction of mixed and allochthonous genotypes from other Mediterranean areas, but the assignment to one of the four clusters was sufficiently robust as proved by the high ancestry coefficient values displayed by most of the individuals (>84%). The population structure of A. minutum on this scale can be explained by microalgal dispersion following the main regional circulation patterns over successive generations. We hypothesize that limited connectivity among the A. minutum populations results in low gene flow but not in the erosion of variability within the population, as indicated by the high gene diversity values. This study represents a first and new integrated approach, combining both genetic and numerical methods, to characterize and interpret the population structure of a toxic microalgal species. This approach of characterizing genetic population structure and connectivity at a regional scale holds promise for the control and management of the harmful algal bloom events in the Mediterranean Sea.


Ocean Science ◽  
2007 ◽  
Vol 3 (1) ◽  
pp. 77-89 ◽  
Author(s):  
M. A. Ahumada ◽  
A. Cruzado

Abstract. The Princeton Ocean Model – POM (Blumberg and Mellor, 1987) has been implemented in the Northwestern Mediterranean nested (in one-way off-line mode) to a general circulation model of the Mediterranean Sea – OGCM (Pinardi and Masetti, 2000; Demirov and Pinardi, 2002) in order to investigate if this model configuration is capable of reproducing the major features of the circulation as known from observations and to improve what has been made by previous numerical modeling works. According to the model results, the large-scale cyclonic circulation in the northern part of the Northwestern Mediterranean is, at least in the upper layers, less coherent in winter and spring than in summer and autumn. Furthermore, there is evidence that the mesoscale structure (eddies and meanders) is, during all year, a significant dynamic characteristic in this region of the Mediterranean Sea. Finally, concerning the circulation in the lower layers, the model results have confirmed that Levantine Intermediate Water (LIW) and Western Mediterranean Deep Water (WMDW) follow essentially a cyclonic path during all year.


2019 ◽  
Vol 12 (12) ◽  
pp. 5137-5155 ◽  
Author(s):  
Philip B. Holden ◽  
Neil R. Edwards ◽  
Thiago F. Rangel ◽  
Elisa B. Pereira ◽  
Giang T. Tran ◽  
...  

Abstract. We describe the development of the “Paleoclimate PLASIM-GENIE (Planet Simulator–Grid-Enabled Integrated Earth system model) emulator” PALEO-PGEM and its application to derive a downscaled high-resolution spatio-temporal description of the climate of the last 5×106 years. The 5×106-year time frame is interesting for a range of paleo-environmental questions, not least because it encompasses the evolution of humans. However, the choice of time frame was primarily pragmatic; tectonic changes can be neglected to first order, so that it is reasonable to consider climate forcing restricted to the Earth's orbital configuration, ice-sheet state, and the concentration of atmosphere CO2. The approach uses the Gaussian process emulation of the singular value decomposition of ensembles of the intermediate-complexity atmosphere–ocean GCM (general circulation model) PLASIM-GENIE. Spatial fields of bioclimatic variables of surface air temperature (warmest and coolest seasons) and precipitation (wettest and driest seasons) are emulated at 1000-year intervals, driven by time series of scalar boundary-condition forcing (CO2, orbit, and ice volume) and assuming the climate is in quasi-equilibrium. Paleoclimate anomalies at climate model resolution are interpolated onto the observed modern climatology to produce a high-resolution spatio-temporal paleoclimate reconstruction of the Pliocene–Pleistocene.


2021 ◽  
Vol 9 (5) ◽  
pp. 469
Author(s):  
Stefano Querin ◽  
Simone Cosoli ◽  
Riccardo Gerin ◽  
Célia Laurent ◽  
Vlado Malačič ◽  
...  

Although small in size, the Gulf of Trieste (GoT), a marginal coastal basin in the northern Adriatic Sea, is characterized by very complex dynamics and strong variability of its oceanographic conditions. In April–May 2012, a persistent, large-scale anticyclonic eddy was observed in the GoT. This event was captured by both High Frequency Radar (HFR) and Lagrangian drifter observations collected within the European MED TOSCA (Tracking Oil Spill and Coastal Awareness) project. The complexity of the system and the variety of forcing factors constitute major challenges from a numerical modeling perspective when it comes to simulating the observed features. In this study, we implemented a high-resolution hydrodynamic model in an attempt to reproduce and analyze the observed basin-wide eddy structure and determine its drivers. We adopted the Massachusetts Institute of Technology General Circulation Model (MITgcm), tailored for the GoT, nested into a large-scale simulation of the Adriatic Sea and driven by a tidal model, measured river freshwater discharge data and surface atmospheric forcing. Numerical results were qualitatively and quantitatively evaluated against HFR surface current maps, Lagrangian drifter trajectories and thermohaline data, showing good skills in reproducing the general circulation, but failing in accurately tracking the drifters. Model sensitivity to different forcing factors (wind, river and tides) was also assessed.


Sign in / Sign up

Export Citation Format

Share Document