scholarly journals The effect of increased resolution of geostationary satellite imageries on predictability of tropical thunderstorms over Southeast Asia

2018 ◽  
Author(s):  
Kwonmin Lee ◽  
Hye-Sil Kim ◽  
Yong-Sang Choi

Abstract. Tropical thunderstorms cause heavy damage to property and lives, and there is a strong interest in advancing the predictability of thunderstorms with more precise satellite observations. Using high-resolution (2 km and 10 minutes) imageries from the geostationary satellite (Himawari-8) recently launched over Southeast Asia, we examine how early the thunderstorms can be predicted compared to the low-resolution (4 km and 30 minutes) imageries of the former satellite. We compare the lead times for eight thunderstorms that occurred in August 2017 between high- and low-resolution imageries. These thunderstorms are identified by pixels with a brightness temperature at 10.45 μm (BT11) gradually decreasing by more than 5 K per 10 minutes (15 K per 30 minutes) compared to the previous imagery. The lead time is then calculated as the time passed from the initial to the mature stage of the thunderstorm signal, based on the time series of a minimum BT11 of these pixels. The lead time is found to be 100–180 minutes for the high-resolution imagery, while it is only found to be 30 minutes if detectable at all for the low-resolution imagery. This result suggests that the high-resolution imagery is essential for substantial disaster mitigation because of its ability to note an alarm more than two hours ahead of a matured thunderstorm.

2019 ◽  
Vol 19 (10) ◽  
pp. 2241-2248
Author(s):  
Kwonmin Lee ◽  
Hye-Sil Kim ◽  
Yong-Sang Choi

Abstract. Tropical thunderstorms cause significant damage to property and lives, and a strong research interest exists in the advances and improvement of thunderstorm predictability by satellite observations. Using high-resolution (2 km and 10 min) imagery from the geostationary satellite, Himawari-8, recently launched over Southeast Asia, we examined the earliest possible time for the prediction of thunderstorms as compared to the potential of low-resolution (4 km and 30 min) imagery of the former satellite. We compared the lead times of high- and low-resolution imageries of 60 tropical thunderstorms that occurred in August 2017. These thunderstorms were identified by the decreasing trend in the 10.45 µm brightness temperature (BT11) by over 5 K per 10 min for the high-resolution imagery and 15 K per 30 min for the low-resolution imagery. The lead time was then calculated over the time from the initial state to the mature state of the thunderstorm, based on the time series of a minimum BT11 of thunderstorm pixels. The lead time was found to be 90–180 min for the high-resolution imagery, whereas it was only 60 min (if detectable) for the low-resolution imagery. These results indicate that high-resolution imagery is essential for substantial disaster mitigation owing to its ability to raise an alarm more than 2 h ahead of the mature state of a tropical thunderstorm.


2018 ◽  
Vol 19 (8) ◽  
pp. 1289-1304 ◽  
Author(s):  
Bong-Chul Seo ◽  
Felipe Quintero ◽  
Witold F. Krajewski

Abstract This study addresses the uncertainty of High-Resolution Rapid Refresh (HRRR) quantitative precipitation forecasts (QPFs), which were recently appended to the operational hydrologic forecasting framework. In this study, we examine the uncertainty features of HRRR QPFs for an Iowa flooding event that occurred in September 2016. Our evaluation of HRRR QPFs is based on the conventional approach of QPF verification and the analysis of mean areal precipitation (MAP) with respect to forecast lead time. The QPF verification results show that the precipitation forecast skill of HRRR significantly drops during short lead times and then gradually decreases for further lead times. The MAP analysis also demonstrates that the QPF error sharply increases during short lead times and starts decreasing slightly beyond 4-h lead time. We found that the variability of QPF error measured in terms of MAP decreases as basin scale and lead time become larger and longer, respectively. The effects of QPF uncertainty on hydrologic prediction are quantified through the hillslope-link model (HLM) simulations using hydrologic performance metrics (e.g., Kling–Gupta efficiency). The simulation results agree to some degree with those from the MAP analysis, finding that the performance achieved from the QPF forcing decreases during 1–3-h lead times and starts increasing with 4–6-h lead times. The best performance acquired at the 1-h lead time does not seem acceptable because of the large overestimation of the flood peak, along with an erroneous early peak that is not observed in streamflow observations. This study provides further evidence that HRRR contains a well-known weakness at short lead times, and the QPF uncertainty (e.g., bias) described as a function of forecast lead times should be corrected before its use in hydrologic prediction.


2021 ◽  
Author(s):  
Ronnie Javier Araneda-Cabrera ◽  
María Bermudez ◽  
Jerónimo Puertas

<p>Hydrological droughts can trigger socioeconomic disruptions which can cause large impacts on societies. Therefore, their forecast is extremely important for early warning and disaster mitigation. Several modelling approaches have been developed for this purpose, and models based on machine learning have become popular during the last decades. In this study, we evaluated the performance of five commonly used models in drought forecasting: Autoregressive Integrated Moving Average (ARIMA), multiple linear (MLM), Random Forest (RF), K-nearest Neighbours (KN) and Artificial Networks (ANN) models.<br>The study site was the Paute River basin (4816.56 km2) located in the mid-high and eastern part of the Ecuadorian Andes. The "Daniel Palacios" dam, the oldest of 4 strategic dams and which alone generates 35% of Ecuador's national energy demand, was considered the lowest point in the basin. The basin is susceptible to hydrological droughts, which have led to power shortages in the past (e.g., in 1995, 1999 and 2009).<br>As hydrological drought predictand we used the monthly Standardized Streamflow Index (SSI) accumulated at 1-, 3-, 6- and 12-months, while the predictor variables were precipitation, temperature, river flow and the climatic indices associated with the El Niño-Southern Oscillation, ENSO (El Niño 1+2, El Niño 3, El Niño 4, and El Niño 3.4, which are strongly related to droughts in Ecuador). Data were obtained from the National Institute of Meteorology and Hydrology (INAMHI) and the Climate Prediction Centre of NOAA.<br>The models were evaluated for lead times of 1, 3, 6 and 12 months through the determination coefficient (R2), the Nash-Sutcliff efficiency (NSE) and the Root Mean Square Error (RMSE). The models' capability to distinguish between occurrence and non-occurrence of droughts (here defined as SSI≤-1) was assessed with a receiver operating characteristic (ROC) diagram. Models were validated using the expanding window (walk forward approach) as a back testing strategy starting as calibration and validation periods Aug/1984-Dec/2010 and Jan/2011-Dec/2019 (75 and 25% of the data, respectively).<br>As expected, SSI at longer aggregations can be predicted more accurately than at shorter ones with all models. This fact is explained because the former ones more effectively reduce the noise than the latter due to the increase in filter length. The greater the lead time, the less reliable the prediction. Considering a lead time of 1 month, the best model was the ANN for SSI-1 and SSI-3 (R2=0.64, ROC=0.67; and R2=0.78, ROC=1.00 respectively), and the MLM model for SSI-6 and SSI-12 (R2=0.86, ROC=0.66, and R2=0.96, ROC=0.99 respectively). However, very similar performances were obtained in the latter cases by the ANN model (R2=0.86, ROC=0.66 R2=0.91 and ROC=0.75 respectively) and the ARIMA model (R2=0.83, ROC=0.98 R2=0.93 and ROC=0.99 respectively). ARIMA models showed large errors for lead times longer than 1 month, so an ANN model is recommended. However, to maximize their potential, further research could explore modifications of the ANN architecture or the input data. Results indicate that these models can be used to forecast hydrological droughts in the Paute river basin and can be used to support reservoir operation decisions.</p>


2019 ◽  
Author(s):  
Sawyer Reid stippa ◽  
George Petropoulos ◽  
Leonidas Toulios ◽  
Prashant K. Srivastava

Archaeological site mapping is important for both understanding the history as well as protecting them from excavation during the developmental activities. As archaeological sites generally spread over a large area, use of high spatial resolution remote sensing imagery is becoming increasingly applicable in the world. The main objective of this study was to map the land cover of the Itanos area of Crete and of its changes, with specific focus on the detection of the landscape’s archaeological features. Six satellite images were acquired from the Pleiades and WorldView-2 satellites over a period of 3 years. In addition, digital photography of two known archaeological sites was used for validation. An Object Based Image Analysis (OBIA) classification was subsequently developed using the five acquired satellite images. Two rule-sets were created, one using the standard four bands which both satellites have and another for the two WorldView-2 images their four extra bands included. Validation of the thematic maps produced from the classification scenarios confirmed a difference in accuracy amongst the five images. Comparing the results of a 4-band rule-set versus the 8-band showed a slight increase in classification accuracy using extra bands. The resultant classifications showed a good level of accuracy exceeding 70%. Yet, separating the archaeological sites from the open spaces with little or no vegetation proved challenging. This was mainly due to the high spectral similarity between rocks and the archaeological ruins. The satellite data spatial resolution allowed for the accuracy in defining larger archaeological sites, but still was a difficulty in distinguishing smaller areas of interest. The digital photography data provided a very good 3D representation for the archaeological sites, assisting as well in validating the satellite-derived classification maps. All in all, our study provided further evidence that use of high resolution imagery may allow for archaeological sites to be located, but only where they are of a suitable size archaeological features.


2017 ◽  
Author(s):  
R. Seth Wood ◽  
◽  
Ashley R. Manning-Berg ◽  
Kenneth H. Williford ◽  
Linda C. Kah

Land ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 193
Author(s):  
Ali Alghamdi ◽  
Anthony R. Cummings

The implications of change on local processes have attracted significant research interest in recent times. In urban settings, green spaces and forests have attracted much attention. Here, we present an assessment of change within the predominantly desert Middle Eastern city of Riyadh, an understudied setting. We utilized high-resolution SPOT 5 data and two classification techniques—maximum likelihood classification and object-oriented classification—to study the changes in Riyadh between 2004 and 2014. Imagery classification was completed with training data obtained from the SPOT 5 dataset, and an accuracy assessment was completed through a combination of field surveys and an application developed in ESRI Survey 123 tool. The Survey 123 tool allowed residents of Riyadh to present their views on land cover for the 2004 and 2014 imagery. Our analysis showed that soil or ‘desert’ areas were converted to roads and buildings to accommodate for Riyadh’s rapidly growing population. The object-oriented classifier provided higher overall accuracy than the maximum likelihood classifier (74.71% and 73.79% vs. 92.36% and 90.77% for 2004 and 2014). Our work provides insights into the changes within a desert environment and establishes a foundation for understanding change in this understudied setting.


2021 ◽  
Vol 13 (7) ◽  
pp. 1310
Author(s):  
Gabriele Bitelli ◽  
Emanuele Mandanici

The exponential growth in the volume of Earth observation data and the increasing quality and availability of high-resolution imagery are increasingly making more applications possible in urban environments [...]


2021 ◽  
Vol 9 (4) ◽  
pp. 383
Author(s):  
Ting Yu ◽  
Jichao Wang

Mean wave period (MWP) is one of the key parameters affecting the design of marine facilities. Currently, there are two main methods, numerical and data-driven methods, for forecasting wave parameters, of which the latter are widely used. However, few studies have focused on MWP forecasting, and even fewer have investigated it with spatial and temporal information. In this study, correlations between ocean dynamic parameters are explored to obtain appropriate input features, significant wave height (SWH) and MWP. Subsequently, a data-driven approach, the convolution gated recurrent unit (Conv-GRU) model with spatiotemporal characteristics, is utilized to field forecast MWP with 1, 3, 6, 12, and 24-h lead times in the South China Sea. Six points at different locations and six consecutive moments at every 12-h intervals are selected to study the forecasting ability of the proposed model. The Conv-GRU model has a better performance than the single gated recurrent unit (GRU) model in terms of root mean square error (RMSE), the scattering index (SI), Bias, and the Pearson’s correlation coefficient (R). With the lead time increasing, the forecast effect shows a decreasing trend, specifically, the experiment displays a relatively smooth forecast curve and presents a great advantage in the short-term forecast of the MWP field in the Conv-GRU model, where the RMSE is 0.121 m for 1-h lead time.


2021 ◽  
Vol 13 (15) ◽  
pp. 2862
Author(s):  
Yakun Xie ◽  
Dejun Feng ◽  
Sifan Xiong ◽  
Jun Zhu ◽  
Yangge Liu

Accurately building height estimation from remote sensing imagery is an important and challenging task. However, the existing shadow-based building height estimation methods have large errors due to the complex environment in remote sensing imagery. In this paper, we propose a multi-scene building height estimation method based on shadow in high resolution imagery. First, the shadow of building is classified and described by analyzing the features of building shadow in remote sensing imagery. Second, a variety of shadow-based building height estimation models is established in different scenes. In addition, a method of shadow regularization extraction is proposed, which can solve the problem of mutual adhesion shadows in dense building areas effectively. Finally, we propose a method for shadow length calculation combines with the fish net and the pauta criterion, which means that the large error caused by the complex shape of building shadow can be avoided. Multi-scene areas are selected for experimental analysis to prove the validity of our method. The experiment results show that the accuracy rate is as high as 96% within 2 m of absolute error of our method. In addition, we compared our proposed approach with the existing methods, and the results show that the absolute error of our method are reduced by 1.24 m-3.76 m, which can achieve high-precision estimation of building height.


Sign in / Sign up

Export Citation Format

Share Document