scholarly journals Defining scale thresholds for geomagnetic storms through statistics

2018 ◽  
Author(s):  
Judith Palacios ◽  
Antonio Guerrero ◽  
Consuelo Cid ◽  
Elena Saiz ◽  
Yolanda Cerrato

Abstract. Geomagnetic storms, as part of the Sun-Earth relations, are continuously monitored with different indices and scales. These indices usually have some associated scale thresholds to quantify the severity or risk of geomagnetic disturbances. However, the most usual scale thresholds are arbitrarily chosen. In this work we aim to quantify the range of the thresholds through a new method. These new thresholds are based on statistical distribution fitting. We used different geomagnetic indices, as Dst, SYM-H, and Kp, since they are relevant for space weather purposes. The first two indices have been discriminated between their negative values and the whole dataset. We considered two periods: a short-term one, comprising data from 1997 to 2012; and long-term ones, which are from 1957–2012 for Dst and 1932–2012 for Kp. We look for the best fit for different statistical continuous distributions applied to these indices. The best fits and the data distribution functions yield to intersects that can be used to define thresholds. The best fit distribution functions are more coincidental between them when considering determined similar datasets, as non-central f-distribution for negative values, meaningful for geomagnetic disturbances; or non-central Student's-t, when the whole dataset is taken. The method yields different values for thresholds depending on the index. Thresholds for geomagnetic storms can be chosen by common values of SYM-H and Dst, as −75 nT for moderate storms; −150 nT for intense storms, and −330 nT for extreme storms. For the case of Kp, the value equal to 5 may mark the departure from quiet time to stormy time. The obtained values are close to those usually considered as thresholds for, typically, Dst and Kp; therefore the thresholds defined here may provide criteria to assess the vulnerability to geomagnetic activity on design or mitigation purposes.

Author(s):  
Judith Palacios ◽  
Antonio Guerrero ◽  
Consuelo Cid ◽  
Elena Saiz ◽  
Yolanda Cerrato

Abstract. Geomagnetic storms, as part of the Sun-Earth relations, are continuously monitored with different indices and scales. These indices have some scale thresholds to quantify the severity or risk of geomagnetic disturbances. However, the most usual scale thresholds are arbitrarily chosen. In this work we aim to quantify the range of the thresholds through a new method. These new thresholds are based on statistical distribution fitting. The data used are from a regional real-time high-cadence geomagnetic index, named LDiñ, and its derivative, LCiñ. We considered the negative part of LDiñ, as significant for geomagnetic disturbances; and the absolute value of LCiñ, significant for geomagnetically induced currents. Then we look for the best fit for different statistical continuous distributions applied to these indices. The method yields that the beta prime is the most suitable functions for negative values of LDiñ, whereas power-law and Johnson-SU are the best fits for LCiñ and the whole distribution, respectively. We define new thresholds for intense, very intense and extreme geomagnetic disturbances as the intersects between these best fit distributions and the index complementary cumulative distribution function. Then, thresholds for the negative part of LDiñ, are −100 nT, −205 and −475 nT. The thresholds for the absolute value of LCiñ, are 6, 18 and 32 nT min−1. The thresholds defined here provide criteria to assess the vulnerability to geomagnetic activity on design or mitigation purposes. These threshold definitions will be applied for different products in the Spanish Space Weather Service (SeNMEs) website http://www.senmes.es/index-en.php.


Author(s):  
Ricardo Sánchez-Murillo

This study presents a hydrogeochemical analysis of spring responses (2013-2017) in the tropical mountainous region of the Central Valley of Costa Rica. The isotopic distribution of δ18O and δ2H in rainfall resulted in a highly significant meteoric water line: δ2H = 7.93×δ18O + 10.37 (r2=0.97). Rainfall isotope composition exhibited a strong dependent seasonality. The isotopic variation (δ18O) of two springs within the Barva aquifer was simulated using the FlowPC program to determine mean transit times (MTTs). Exponential-piston and dispersion distribution functions provided the best-fit to the observed isotopic composition at Flores and Sacramento springs, respectively. MTTs corresponded to 1.23±0.03 (Sacramento) and 1.42±0.04 (Flores) years. The greater MTT was represented by a homogeneous geochemical composition at Flores, whereas the smaller MTT at Sacramento is reflected in a more variable geochemical response. The results may be used to enhance modelling efforts in central Costa Rica, whereby scarcity of long-term data limits water resources management plans.


2020 ◽  
Vol 12 (16) ◽  
pp. 2634 ◽  
Author(s):  
Kacper Kotulak ◽  
Irina Zakharenkova ◽  
Andrzej Krankowski ◽  
Iurii Cherniak ◽  
Ningbo Wang ◽  
...  

At equatorial and high latitudes, the intense ionospheric irregularities and plasma density gradients can seriously affect the performances of radio communication and satellite-based navigation systems; that represents a challenging topic for the scientific and engineering communities and operational use of communication and navigation services. The GNSS-based ROTI (rate of TEC index) is one of the most widely used indices to monitor the occurrence and intensity of ionospheric irregularities. In this paper, we examined the long-term performance of the ROTI in terms of finding the climatological characteristics of TEC fluctuations. We considered the different scale temporal signatures and checked the general sensitivity to the solar and geomagnetic activity. We retrieved and analyzed long-term time-series of ROTI values for two chains of GNSS stations located in European and North-American regions. This analysis covers three full years of the 24th solar cycle, which represent different levels of solar activity and include periods of intense geomagnetic storms. The ionospheric irregularities’ geographical distribution, as derived from ROTI, shows a reasonable consistency to be found within the poleward/equatorward boundaries of the auroral oval specified by empirical models. During magnetic midnight and quiet-time conditions, the equatorward boundary of the ROTI-derived ionospheric irregularity zone was observed at 65–70° of north magnetic latitude, while for local noon conditions this boundary was more poleward at 75–85 magnetic latitude. The ionospheric irregularities of low-to-moderate intensity were found to occur within the auroral oval at all levels of geomagnetic activity and seasons. At moderate and high levels of solar activity, the intensities of ionospheric irregularities are larger during local winter conditions than for the local summer and polar day conditions. We found that ROTI displays a selective latitudinal sensitivity to the auroral electrojet activity—the strongest dependence (correlation R > 0.6–0.8) was observed within a narrow latitudinal range of 55–70°N magnetic latitude, which corresponded to a band of the largest ROTI values within the auroral oval zone expanded equatorward during geomagnetic disturbances.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Shinichi Watari ◽  
Satoko Nakamura ◽  
Yusuke Ebihara

AbstractWe need a typical method of directly measuring geomagnetically induced current (GIC) to compare data for estimating a potential risk of power grids caused by GIC. Here, we overview GIC measurement systems that have appeared in published papers, note necessary requirements, report on our equipment, and show several examples of our measurements in substations around Tokyo, Japan. Although they are located at middle latitudes, GICs associated with various geomagnetic disturbances are observed, such as storm sudden commencements (SSCs) or sudden impulses (SIs) caused by interplanetary shocks, geomagnetic storms including a storm caused by abrupt southward turning of strong interplanetary magnetic field (IMF) associated with a magnetic cloud, bay disturbances caused by high-latitude aurora activities, and geomagnetic variation caused by a solar flare called the solar flare effect (SFE). All these results suggest that GIC at middle latitudes is sensitive to the magnetospheric current (the magnetopause current, the ring current, and the field-aligned current) and also the ionospheric current.


2002 ◽  
Vol 4 (3) ◽  
pp. 183-190 ◽  
Author(s):  
W. Hitzl ◽  
G. Grabner

The comparison of different methods of keratoprosthesis (KP) regarding their long-term success, as far as visual acuity is concerned, is difficult: this is the case both as a standardized reporting method agreed upon by all research groups has not been reported and far less accepted, and as the quality of life for the patient not only depends on the level of visual acuity, but also quite significantly on the “survival time” of the implant. Therefore, an analysis of a single series of patients with Osteo–Odonto–Keratoprosthesis (OOKP) was performed. Statistical analysis methods used by others in similar groups of surgical procedures have included descriptive statistics, survival analysis and ANOVA. These methods comprised comparisons of empirical densities or distribution functions and empirical survival curves. It is the objective of this paper to provide an inductive statistical method to avoid the problems with descriptive techniques and survival analysis. This statistical model meets four important standards: (1) the efficiency of a surgical technique can be assessed within an arbitrary time interval by a new index (VAT-index), (2) possible autocorrelations of the data are taken into consideration and (3) the efficiency is not only stated by a point estimator, but also 95% point-wise confidence limits are computed based on the Monte Carlo method, and finally, (4) the efficiency of a specific method is illustrated by line and range plots for quick illustration and can also be used for the comparison of different other surgical techniques such as refractive techniques, glaucoma and retinal surgery.


2020 ◽  
Vol 125 (10) ◽  
Author(s):  
H. Wu ◽  
T. Chen ◽  
V. V. Kalegaev ◽  
M. I. Panasyuk ◽  
N. A. Vlasova ◽  
...  

2020 ◽  
Vol 14 (6) ◽  
Author(s):  
Ali Dergham ◽  
Greg Hosier ◽  
Melanie Jaeger ◽  
J. Curtis Nickel ◽  
D. Robert Siemens ◽  
...  

Introduction: Prior studies have identified significant knowledge gaps in acute and chronic pain management among graduating urology residents as of five years ago. Since then, there has been increasing awareness of the impact of excessive opioid prescribing on long-term narcotic use and development of adverse narcotic-related events. However, it is unclear whether the attitudes and experience of graduating urology residents have changed. We set out to evaluate the attitudes and experience of graduating urology residents in prescribing opioid/non-opioid analgesia for acute (AP), chronic non-cancer (CnC), and chronic cancer (CC) pain. Methods: Graduating urology residents were surveyed at a review course in 2018. The survey consisted of open-ended and close-ended five-point Likert scale questions. Descriptive statistics, Mann-Whitney U-test, and Student’s t-test were performed. Results: A total of 32 PGY5 urology residents completed our survey (92% response rate). The vast majority agreed that formal training in managing AP/CnC/CC to be valuable (91/78/81%). Most find their training in CnC/CC management to be inadequate and are unaware of any opioid prescribing guidelines; 66% never counsel patients on how to dispose of excess opioids. In general, 88% are comfortable prescribing opioids, whereas most are very uncomfortable prescribing cannabis or antidepressants (100%/78%). Residents reported the Acute Pain Service as the highest-rated resource for information, and dedicated textbooks the least. Conclusions: This survey demonstrated that experience in pain management remains variable among urology residents. Knowledge gaps remain, particularly in the management of chronic cancer/non-cancer pain.


2017 ◽  
Vol 35 (6) ◽  
pp. 1309-1326 ◽  
Author(s):  
Patricia Mara de Siqueira Negreti ◽  
Eurico Rodrigues de Paula ◽  
Claudia Maria Nicoli Candido

Abstract. Total electron content (TEC) is extensively used to monitor the ionospheric behavior under geomagnetically quiet and disturbed conditions. This subject is of greatest importance for space weather applications. Under disturbed conditions the two main sources of electric fields, which are responsible for changes in the plasma drifts and for current perturbations, are the short-lived prompt penetration electric fields (PPEFs) and the longer-lasting ionospheric disturbance dynamo (DD) electric fields. Both mechanisms modulate the TEC around the globe and the equatorial ionization anomaly (EIA) at low latitudes. In this work we computed vertical absolute TEC over the low latitude of South America. The analysis was performed considering HILDCAA (high-intensity, long-duration, continuous auroral electrojet (AE) activity) events and geomagnetic storms. The characteristics of storm-time TEC and HILDCAA-associated TEC will be presented and discussed. For both case studies presented in this work (March and August 2013) the HILDCAA event follows a geomagnetic storm, and then a global scenario of geomagnetic disturbances will be discussed. Solar wind parameters, geomagnetic indices, O ∕ N2 ratios retrieved by GUVI instrument onboard the TIMED satellite and TEC observations will be analyzed and discussed. Data from the RBMC/IBGE (Brazil) and IGS GNSS networks were used to calculate TEC over South America. We show that a HILDCAA event may generate larger TEC differences compared to the TEC observed during the main phase of the precedent geomagnetic storm; thus, a HILDCAA event may be more effective for ionospheric response in comparison to moderate geomagnetic storms, considering the seasonal conditions. During the August HILDCAA event, TEC enhancements from  ∼  25 to 80 % (compared to quiet time) were observed. These enhancements are much higher than the quiet-time variability observed in the ionosphere. We show that ionosphere is quite sensitive to solar wind forcing and considering the events studied here, this was the most important source of ionospheric responses. Furthermore, the most important source of TEC changes were the long-lasting PPEFs observed on August 2013, during the HILDCAA event. The importance of this study relies on the peculiarity of the region analyzed characterized by high declination angle and ionospheric gradients which are responsible for creating a complex response during disturbed periods.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3427 ◽  
Author(s):  
Geovanny Marulanda ◽  
Antonio Bello ◽  
Jenny Cifuentes ◽  
Javier Reneses

Wind power has been increasing its participation in electricity markets in many countries around the world. Due to its economical and environmental benefits, wind power generation is one of the most powerful technologies to deal with global warming and climate change. However, as wind power grows, uncertainty in power supply increases due to wind intermittence. In this context, accurate wind power scenarios are needed to guide decision-making in power systems. In this paper, a novel methodology to generate realistic wind power scenarios for the long term is proposed. Unlike most of the literature that tackles this problem, this paper is focused on the generation of realistic wind power production scenarios in the long term. Moreover, spatial-temporal dependencies in multi-area markets have been considered. The results show that capturing the dependencies at the monthly level could improve the quality of scenarios at different time scales. In addition, an evaluation at different time scales is needed to select the best approach in terms of the distribution functions of the generated scenarios. To evaluate the proposed methodology, several tests have been made using real data of wind power generation for Spain, Portugal and France.


Sign in / Sign up

Export Citation Format

Share Document