scholarly journals Comprehensive evaluation of hydrological drought and the effects of large reservoir on drought resistance in the Hun River basin, NE China

2021 ◽  
Author(s):  
Fengtian Yang ◽  
Shupeng Yue ◽  
Xiaodan Sheng

Abstract. Evolution of drought under changing climate and the operation of large reservoir play an important role in drought warning and control. Thus, the evolution characteristics of hydrological drought and the effects of large reservoir on drought resistance are explored in the Hun river basin (HRB). Firstly, Standardized runoff Index (SRI) was adopted to evaluate the evolution characteristics of hydrological drought. Meanwhile, based on drought duration and severity identified by the run theory, the copula function with the highest goodness of fit was selected to calculate the return period of hydrological drought. Furthermore, the propagation time from meteorological to hydrological drought were determined by calculating the Pearson correlation coefficients between 1-month SRI and multi-time scale Standardized precipitation index (SPI). Finally, based on the cumulative precipitation deficit thresholds for triggering hydrological drought, the impact of large reservoir on drought resistance of the basin was revealed. The results show that: (1) hydrological drought showed a slight strengthening trend in the eastern, while presented alternate characteristics of drought and flood in the western and center of the HRB from 1967 to 2019; (2) the western and center of the HRB were vulnerable districts to hydrological drought with longer drought duration and higher severity; (3) the most severe drought with drought duration of 23 months, severity of 28.7, and corresponding return periods that both exceed the thresholds of duration and severity and exceed the threshold of duration or severity were 371 years and 89 years, respectively; (4) the propagation time from meteorological to hydrological drought of the lower reaches of large reservoir has been significantly prolonged owing to the operation of large reservoir; and (5) the operation of large reservoir strengthened the drought resistance in the lower reaches while lightly weaken in the upper reaches of large reservoir.

Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2390 ◽  
Author(s):  
Sun ◽  
Zhang ◽  
Yao ◽  
Wen

: Hydrological droughts were characterized using the run-length theory and the AIC (Akaike information criterion) techniques were accepted to evaluate the modeling performance of nine probability functions. In addition, the copula functions were used to describe joint probability behaviors of drought duration and drought severity for the major tributaries of the Huai River Basin (HRB) which is located in the transitional zone between humid and semi-humid climates. The results indicated that: (1) the frequency of hydrological droughts in the upper HRB is higher than that in the central HRB, while the duration of the hydrological drought is in reverse spatial pattern. The drought frequency across the Shiguan River along the south bank of the HRB is higher than the other two tributaries; (2) generalized Pareto distribution is the appropriate distribution function with the best performance in modelling the drought duration over the HRB; while the Generalized Extreme Value (GEV) distribution can effectively describe the probabilistic properties of the drought severity. Joe copula and Tawn copula functions are the best choices and were used in this study. Given return periods of droughts of <30 years, the droughts in the upper HRB are the longest, and the shortest are in the central HRB; (3) the frequency of droughts along the mainstream of the HRB is higher than tributaries of the HRB. However, concurrence probability of droughts along the mainstream of the HRB is lower than the tributaries of the HRB. The drought resistance capacity of HRB has been significantly improved, effectively reducing the impact of hydrological drought on crops after 2010.


2015 ◽  
Vol 15 (8) ◽  
pp. 1889-1906 ◽  
Author(s):  
B. S. Weng ◽  
D. H. Yan ◽  
H. Wang ◽  
J. H. Liu ◽  
Z. Y. Yang ◽  
...  

Abstract. Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao River basin in northeastern China. The results simulated by the GDAI are compared to observed drought disaster records in the Dongliao River basin. In addition, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approaches in general (i.e., standard precipitation index, Palmer drought severity index and rate of water deficit index). Then, generalized drought times, generalized drought duration, and generalized drought severity were calculated by theory of runs. Application of said runs at various drought levels (i.e., mild drought, moderate drought, severe drought, and extreme drought) during the period 1960–2010 shows that the centers of gravity of them all distribute in the middle reaches of Dongliao River basin, and change with time. The proposed methodology may help water managers in water-stressed regions to quantify the impact of drought, and consequently, to make decisions for coping with drought.


2014 ◽  
Vol 2 (11) ◽  
pp. 6703-6746 ◽  
Author(s):  
B. S. Weng ◽  
D. H. Yan ◽  
H. Wang ◽  
T. L. Qin ◽  
J. Yin

Abstract. Drought is firstly a resource issue, and with its development it transforms into a disaster issue. The occurrences of drought events usually feature determinacy and randomness. Drought issue has become one of the major factors to affect sustainable economic and social development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources system for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao river basin (DRB) in the northeast China. The results simulated by the GDAI are then compared to observed drought disaster records in DRB. As second, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approach (i.e. the SPI, the PDSI, and the RWD). Then, generalized drought times (GDT), generalized drought duration (GDD), and generalized drought severity (GDS) were calculated by theory of runs. Application of the GDT, the GDD, and the GDS of various drought levels (i.e. mild drought, moderate drought, severe drought, and extreme drought) to the period 1960–2010 shows that the centers of gravity of them are all distributed in the middle reached of DRB, and change with time. The proposed methodology helps water managers in water-stressed regions to quantify the impact of drought, consequently, to make decisions regarding coping with drought issue.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1958 ◽  
Author(s):  
Zhang ◽  
Wang ◽  
Zhou

This study conducted quantitative diagnosis on the impact of climate change and human activities on drought risk. Taking the Kuye river basin (KRB) in China as the research area, we used variation point diagnosis, simulation of precipitation and runoff, drought risk assessment, and attribution quantification. The results show that: (1) the annual runoff sequence of KRB changed significantly after 1979, which was consistent with the introduction of large-scale coal mining; (2) under the same drought recurrence period, the drought duration and severity in the human activity stage were significantly worse than in the natural and simulation stages, indicating that human activities changed the drought risk in this area; and (3) human activities had little impact on drought severity in the short duration and low recurrence period, but had a greater impact in the long duration and high recurrence period. These results provide scientific guidance for the management, prevention, and resistance of drought; and guarantee sustainable economic and social development in the KRB.


2020 ◽  
Author(s):  
Marjolein H.J. van Huijgevoort ◽  
Janine A. de Wit ◽  
Ruud P. Bartholomeus

&lt;p&gt;Extreme dry conditions occurred over the summer of 2018 in the Netherlands. This severe drought event led to very low groundwater &amp;#160;and surface water levels. These impacted several sectors like navigation, agriculture, nature and drinking water supply. Especially in the Pleistocene uplands of the Netherlands, the low groundwater levels had a large impact on crop yields and biodiversity in nature areas. Projections show that droughts with this severity will occur more often in the future due to changes in climate. To mitigate the impact of these drought events, water management needs to be altered.&lt;/p&gt;&lt;p&gt;In this study, we evaluated the 2018 drought event in the sandy regions of the Netherlands and studied which measures could be most effective to mitigate drought impact. We have included meteorological, soil moisture and hydrological drought and the propagation of the drought through these types. Droughts were determined with standardized indices (e.g. Standardized Precipitation Index) and the variable threshold level method. Investigated measures were, for example, higher water levels in ditches, reduced irrigation from groundwater, and increased water conservation in winter. We also studied the timing of these measures to determine the potential for mitigating effects during a drought versus the effectiveness of long term adaptation. The measures were simulated with the agro-hydrological Soil&amp;#8211;Water&amp;#8211;Atmosphere&amp;#8211;Plant (SWAP) model for several areas across the Netherlands for both agricultural fields and nature sites.&lt;/p&gt;&lt;p&gt;As expected, decreasing irrigation from groundwater reduced the severity of the hydrological drought in the region. Severity of the soil moisture drought also decreased in fields that were never irrigated due to the effects of capillary rise from the groundwater, but, as expected, increased in currently irrigated fields. Increasing the level of a weir in ditches had a relatively small effect on the hydrological drought, provided water was available to sustain higher water levels. This measure is, therefore, better suited as a long term change than as ad hoc measure during a drought. The effectiveness of the measures depended on the characteristics of the regions; for some regions small changes led to increases in groundwater levels for several months, whereas in other regions effects were lost after a few weeks. This study gives insight into the most effective measures to mitigate drought impacts in low-lying sandy regions like the Netherlands.&lt;/p&gt;


2018 ◽  
Vol 22 (1) ◽  
pp. 547-565 ◽  
Author(s):  
A. B. M. Firoz ◽  
Alexandra Nauditt ◽  
Manfred Fink ◽  
Lars Ribbe

Abstract. Hydrological droughts are one of the most damaging disasters in terms of economic loss in central Vietnam and other regions of South-east Asia, severely affecting agricultural production and drinking water supply. Their increasing frequency and severity can be attributed to extended dry spells and increasing water abstractions for e.g. irrigation and hydropower development to meet the demand of dynamic socioeconomic development. Based on hydro-climatic data for the period from 1980 to 2013 and reservoir operation data, the impacts of recent hydropower development and other alterations of the hydrological network on downstream streamflow and drought risk were assessed for a mesoscale basin of steep topography in central Vietnam, the Vu Gia Thu Bon (VGTB) River basin. The Just Another Modelling System (JAMS)/J2000 was calibrated for the VGTB River basin to simulate reservoir inflow and the naturalized discharge time series for the downstream gauging stations. The HEC-ResSim reservoir operation model simulated reservoir outflow from eight major hydropower stations as well as the reconstructed streamflow for the main river branches Vu Gia and Thu Bon. Drought duration, severity, and frequency were analysed for different timescales for the naturalized and reconstructed streamflow by applying the daily varying threshold method. Efficiency statistics for both models show good results. A strong impact of reservoir operation on downstream discharge at the daily, monthly, seasonal, and annual scales was detected for four discharge stations relevant for downstream water allocation. We found a stronger hydrological drought risk for the Vu Gia river supplying water to the city of Da Nang and large irrigation systems especially in the dry season. We conclude that the calibrated model set-up provides a valuable tool to quantify the different origins of drought to support cross-sectorial water management and planning in a suitable way to be transferred to similar river basins.


2013 ◽  
Vol 1 (6) ◽  
pp. 7701-7738 ◽  
Author(s):  
N. Wanders ◽  
H. A. J. van Lanen

Abstract. Hydrological droughts characteristics (drought in groundwater and streamflow) likely will change in the 21st century as a results of climate change. Magnitude and directionality of these changes and their dependency on climatology and catchment characteristics, however, is largely unknown. In this study a conceptual hydrological model was forced by downscaled and bias-corrected outcome from three General Circulation Models for the A2 emission scenario (GCM forced models), and the WATCH Forcing Data re-analysis dataset(reference model). The threshold level method was applied to investigate drought occurrence, duration and deficit volume. Results for the control period (1971–2000) show that the drought characteristics of each GCM forced model reasonably agree with the reference model for most of the climate types, suggesting that the climate model's results after post-processing produce realistic outcome for global drought analyses. For the near future (2021–2050) and far future (2071–2100) the GCM forced models show a decrease in drought occurrence for all major climates around the world and increase of both average drought duration and deficit volume of the remaining drought events. The largest decrease in hydrological drought occurrence is expected in cold (D-)climates where global warming results in a decreased length of the snow season and an increased precipitation. In the dry B-climates the smallest decrease in drought occurrence is expected to occur, which probably will lead to even more severe water scarcity. However, in the extreme climate regions (desert and polar), the analysis for the control period showed that projections are in these regions most uncertain. On a global scale the increase in hydrological drought duration and severity will lead to a higher impact of drought events, which urges water resources managers to timely anticipate on the increased risk on more severe drought in groundwater and streamflow and to design pro-active measures.


2021 ◽  
Vol 937 (2) ◽  
pp. 022117
Author(s):  
V Golubova ◽  
V Gaze ◽  
I Lobunskaya

Abstract The article discusses the impact of severe drought on the growth and development of winter wheat plants. The studies were carried out in 2018-2020. As a starting material, we used 57 samples of winter soft wheat bred by ARC “Donskoy”. The studies were carried out under laboratory and vegetation methods. According to the analysis, it was revealed that the highest values of the index of complex resistance were shown by the samples: intensive type - 1630/17 (282.8 rel.units), 2078/16 (265.1 rel.units), 1990/17 (265, 0 rel.units); semi-intensive type -1727/17 (260.6 rel. units), 2243/17 (258.6 rel. units), 522/16 (252.8 rel. units). The maximum value of the degree of drought resistance of samples of the intensive type was noted for lines 2243/17 (92.4%), 1727/17 (84.9%), and 522/16 (82.6%). Among 36 samples of winter soft wheat of intensive type, high drought resistance was noted in 67% (24 samples) with germination from 71.6 (Univer) to 92.9% (1630/17). High values of heat resistance (I-81-100% of germination) out of 57 studied samples of winter wheat were noted in 56 genotypes, the indicators of which ranged from 85.1% (1181/16) to 98% (Zodiac, 1166/15, 1275/16). The highest grain yield under model drought conditions was noted for winter wheat varieties Zodiac (332.86 g/m2), Premiera (332.48 g/m2) and Podarok Krymu (317.50 g/m2), which is higher than the yield of the Ascet classifier (292.97 g/m2) by 8.0-13.7%..


2021 ◽  
Vol 11 (10) ◽  
Author(s):  
Morteza Lotfirad ◽  
Arash Adib ◽  
Jaber Salehpoor ◽  
Afshin Ashrafzadeh ◽  
Ozgur Kisi

AbstractThis study evaluates the impact of climate change (CC) on runoff and hydrological drought trends in the Hablehroud river basin in central Iran. We used a daily time series of minimum temperature (Tmin), maximum temperature (Tmax), and precipitation (PCP) for the baseline period (1982–2005) analysis. For future projections, we used the output of 23 CMIP5 GCMs and two scenarios, RCP 4.5 and RCP 8.5; then, PCP, Tmin, and Tmax were projected in the future period (2025–2048). The GCMs were weighed based on the K-nearest neighbors algorithm. The results indicated a rising temperature in all months and increasing PCP in most months throughout the Hablehroud river basin's areas for the future period. The highest increase in the Tmin and Tmax in the south of the river basin under the RCP 8.5 scenario, respectively, was 1.87 °C and 1.80 °C. Furthermore, the highest reduction in the PCP was 54.88% in August under the RCP 4.5 scenario. The river flow was simulated by the IHACRES rainfall-runoff model. The annual runoff under the scenarios RCP 4.5 and RCP 8.5 declined by 11.44% and 13.13%, respectively. The basin runoff had a downward trend at the baseline period; however, it will have a downward trend in the RCP 4.5 scenario and an upward trend in the RCP 8.5 scenario for the future period. This study also analyzed drought by calculating the streamflow drought index for different time scales. Overall, the Hablehroud river basin will face short-term and medium-term hydrological drought in the future period.


2021 ◽  
Vol 21 (3) ◽  
pp. 327-335
Author(s):  
XU YANG ◽  
XIAOHOU SHAO ◽  
XINYU MAO ◽  
XIUNENG LI ◽  
RONGQI LI

Drought is a worldwide concerned issue which causes huge losses in agriculture, economic and damages in natural ecosystems. The precise assessment of drought evolution characteristics is essential for agricultural water management and drought resistance, while such work is rarely reported. Thus, eight meteorological stations located within the Southwest Guizhou Autonomous Prefecture (SGAP) were selected, and the Standardized Precipitation Index (SPI) was used to assess the drought evolution characteristics. The results revealed that the drought occurrences number in Pu'an station was the largest (23 droughts), and the average drought duration in Xingren station was the longest (48.75 months). Moreover, the drought characteristics of the eight stations have account for the largest proportion under normal conditions, was more than 60%, the frequency of drought disaster occurring in Xingren is the highest (30.05%), followed by Wangmo (23.73%). The results of this study will provide theoretical guidance for drought resistance and agricultural production in Southwest Guizhou Autonomous Prefecture of China.


Sign in / Sign up

Export Citation Format

Share Document