scholarly journals Occurrence of pressure-forced meteotsunami events in the eastern Yellow Sea during 2010–2019

2021 ◽  
Vol 21 (11) ◽  
pp. 3323-3337
Author(s):  
Myung-Seok Kim ◽  
Seung-Buhm Woo ◽  
Hyunmin Eom ◽  
Sung Hyup You

Abstract. This study examined the occurrence of meteotsunamis in the eastern Yellow Sea and the conceptual framework of a monitoring/warning system. Using 1 min intervals of mean-sea-level pressure and sea-level observations from 89 meteorological stations and 16 tide gauges between 2010 and 2019, a total of 42 pressure-forced meteotsunami events were classified. Most meteotsunamis (71 %) displayed a distinct seasonal pattern occurring from March to June, and intense meteotsunamis typically occurred at harbor tide gauges. The occurrence characteristics of the meteotsunamis were examined to improve the meteotsunami monitoring/warning system. Air pressure disturbances with speeds of 11–26 m s−1 and NNW–SW directions were conducive to meteotsunami generation. Most meteotsunamis (88 %), as well as strong meteotsunamis with a wave height exceeding 40 cm (19 %), had dominant period bands of less than 30 min, containing the resonant periods of harbors in the eastern Yellow Sea. Thus, the eastern Yellow Sea is a harbor-meteotsunami-dominated environment, characterized by frequent meteotsunami occurrences and local amplification in multiple harbors. This study can provide practical guidance on operation periods, potential hot spots, and risk levels to monitoring/warning system operators in the eastern Yellow Sea.

2011 ◽  
Vol 11 (3) ◽  
pp. 731-740 ◽  
Author(s):  
T. Schöne ◽  
J. Illigner ◽  
P. Manurung ◽  
C. Subarya ◽  
C. Zech ◽  
...  

Abstract. Coastal tide gauges do not only play a central role in the study of climate-related sea level changes but also in tsunami warning systems. Over the past five years, ten GPS-controlled tide gauge systems have been installed by the German Research Centre for Geosciences (GFZ) in Indonesia to assist the development of the Indonesian Tsunami Early Warning System (InaTEWS). These stations are mainly installed at the Indonesian coastline facing the Indian Ocean. The tide gauge systems deliver information about the instantaneous sea level, vertical control information through GPS, and meteorological observations. A tidal analysis at the station's computer allows the detection of rapid changes in the local sea level ("sea level events"/SLE), thus indicating, for example, the arrival time of tsunamis. The technical implementation, communication issues, the operation and the sea level event detection algorithm, and some results from recent earthquakes and tsunamis are described in this paper.


2021 ◽  
Author(s):  
Shraddha Gupta ◽  
Niklas Boers ◽  
Florian Pappenberger ◽  
Jürgen Kurths

AbstractTropical cyclones (TCs) are one of the most destructive natural hazards that pose a serious threat to society, particularly to those in the coastal regions. In this work, we study the temporal evolution of the regional weather conditions in relation to the occurrence of TCs using climate networks. Climate networks encode the interactions among climate variables at different locations on the Earth’s surface, and in particular, time-evolving climate networks have been successfully applied to study different climate phenomena at comparably long time scales, such as the El Niño Southern Oscillation, different monsoon systems, or the climatic impacts of volcanic eruptions. Here, we develop and apply a complex network approach suitable for the investigation of the relatively short-lived TCs. We show that our proposed methodology has the potential to identify TCs and their tracks from mean sea level pressure (MSLP) data. We use the ERA5 reanalysis MSLP data to construct successive networks of overlapping, short-length time windows for the regions under consideration, where we focus on the north Indian Ocean and the tropical north Atlantic Ocean. We compare the spatial features of various topological properties of the network, and the spatial scales involved, in the absence and presence of a cyclone. We find that network measures such as degree and clustering exhibit significant signatures of TCs and have striking similarities with their tracks. The study of the network topology over time scales relevant to TCs allows us to obtain crucial insights into the effects of TCs on the spatial connectivity structure of sea-level pressure fields.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hamish Steptoe ◽  
Nicholas Henry Savage ◽  
Saeed Sadri ◽  
Kate Salmon ◽  
Zubair Maalick ◽  
...  

AbstractHigh resolution simulations at 4.4 km and 1.5 km resolution have been performed for 12 historical tropical cyclones impacting Bangladesh. We use the European Centre for Medium-Range Weather Forecasting 5th generation Re-Analysis (ERA5) to provide a 9-member ensemble of initial and boundary conditions for the regional configuration of the Met Office Unified Model. The simulations are compared to the original ERA5 data and the International Best Track Archive for Climate Stewardship (IBTrACS) tropical cyclone database for wind speed, gust speed and mean sea-level pressure. The 4.4 km simulations show a typical increase in peak gust speed of 41 to 118 knots relative to ERA5, and a deepening of minimum mean sea-level pressure of up to −27 hPa, relative to ERA5 and IBTrACS data. The downscaled simulations compare more favourably with IBTrACS data than the ERA5 data suggesting tropical cyclone hazards in the ERA5 deterministic output may be underestimated. The dataset is freely available from 10.5281/zenodo.3600201.


2021 ◽  
Vol 13 (4) ◽  
pp. 661
Author(s):  
Mohamed Freeshah ◽  
Xiaohong Zhang ◽  
Erman Şentürk ◽  
Muhammad Arqim Adil ◽  
B. G. Mousa ◽  
...  

The Northwest Pacific Ocean (NWP) is one of the most vulnerable regions that has been hit by typhoons. In September 2018, Mangkhut was the 22nd Tropical Cyclone (TC) over the NWP regions (so, the event was numbered as 1822). In this paper, we investigated the highest amplitude ionospheric variations, along with the atmospheric anomalies, such as the sea-level pressure, Mangkhut’s cloud system, and the meridional and zonal wind during the typhoon. Regional Ionosphere Maps (RIMs) were created through the Hong Kong Continuously Operating Reference Stations (HKCORS) and International GNSS Service (IGS) data around the area of Mangkhut typhoon. RIMs were utilized to analyze the ionospheric Total Electron Content (TEC) response over the maximum wind speed points (maximum spots) under the meticulous observations of the solar-terrestrial environment and geomagnetic storm indices. Ionospheric vertical TEC (VTEC) time sequences over the maximum spots are detected by three methods: interquartile range method (IQR), enhanced average difference (EAD), and range of ten days (RTD) during the super typhoon Mangkhut. The research findings indicated significant ionospheric variations over the maximum spots during this powerful tropical cyclone within a few hours before the extreme wind speed. Moreover, the ionosphere showed a positive response where the maximum VTEC amplitude variations coincided with the cyclone rainbands or typhoon edges rather than the center of the storm. The sea-level pressure tends to decrease around the typhoon periphery, and the highest ionospheric VTEC amplitude was observed when the low-pressure cell covers the largest area. The possible mechanism of the ionospheric response is based on strong convective cells that create the gravity waves over tropical cyclones. Moreover, the critical change state in the meridional wind happened on the same day of maximum ionospheric variations on the 256th day of the year (DOY 256). This comprehensive analysis suggests that the meridional winds and their resulting waves may contribute in one way or another to upper atmosphere-ionosphere coupling.


1964 ◽  
Vol 19 (3) ◽  
pp. 441-447 ◽  
Author(s):  
L. G. C. E. Pugh

Cardiac output during muscular exercise was estimated by the acetylene technique on four members of the Himalayan Scientific and Mountaineering expedition 1960–1961 at sea level and 5,800 m (19,000 ft). The output for a given work intensity at 5,800 m (19,000 ft) was comparable with the output at the same work intensity at sea level, but the maximum output was reduced, the mean value being 16 liters/min, compared with 23 liters/min at sea level. Heart rates during light and moderate exercise were higher than the rates observed at the same work intensity at sea level. The maximum heart rate during exercise was limited to 130–150 beats/min compared with 180–196 beats/min at sea level. The stroke volume at altitude was lower than at sea level at each work rate. On breathing oxygen at sea-level pressure, heart rate for a given work intensity was reduced; but the maximum heart rate increased. Indirect evidence suggested that maximum cardiac output increased but probably not to the sea-level values because of the increased hemoglobin and lower heart rate. altitude acclimatization; cardiac function, work and altitude; hypoxia and cardiac output Submitted on July 29, 1963


Sign in / Sign up

Export Citation Format

Share Document