scholarly journals The tsunami triggered by the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake: field investigations on the French Mediterranean coast and tsunami modelling

2009 ◽  
Vol 9 (6) ◽  
pp. 1823-1834 ◽  
Author(s):  
A. Sahal ◽  
J. Roger ◽  
S. Allgeyer ◽  
B. Lemaire ◽  
H. Hébert ◽  
...  

Abstract. A field survey was organized on the French Mediterranean coasts to investigate the effects of the tsunami induced by the 21 May 2003 Boumerdès-Zemmouri (Algeria) earthquake (Mw=6.9). The results show that eight harbours were affected by important sea level disturbances that caused material loss. Unfortunately, the low sampling rate of the French tide gage records (10 min) does not allow for a proper evaluation of the tsunami wave amplitudes since these amplitudes were probably underestimated in the harbours where these sensors are installed. The survey brings to light regional and local contrasts among the harbours' hydrological responses to the tsunami. To better understand these contrasts, a numerical simulation of the sea level elevations induced by the tsunami was conducted. The simulation showed a certain correlation between the field results and the wave amplification along the coast; however it underestimated the observed phenomena. Another simulation was then conducted using high resolution bathymetric grids (space step of 3 m) centred more specifically on 3 neighbouring harbours, however, again the simulation results did not match the amplitudes recorded through the observations. In order to better understand the wave amplification mechanisms inside each grid, a Gaussian signal was virtually broadcasted from the source to the harbours. Virtual sensors identified the periods which are stimulated – or not – by the arrival of the signal in each grid. Comparing these periods with those previously recorded emphasizes the proper period of each waterbody. This paper evaluates the limitations of such a study, focusing specifically on (1) the importance of having accurate and precise data about the source (the lack of information about the signal amplitude leads to an underestimation of the tsunami, thus reproducing only a fourth to a third of the observed phenomenon), (2) the need for networked tide gages with high resolution records and short sampling rates, and (3) the importance of conducting field studies immediately after a tsunami occurs.

2011 ◽  
Vol 1 (32) ◽  
pp. 28 ◽  
Author(s):  
Barak Galanti ◽  
Sergiu Dov Rosen ◽  
Amos Salamon

This poster paper presents first the a tsunami modelling investigation using the state of the art, open source tsunami model (GeoClaw), its adaptation to investigate the impact of tsunami wave generation, propagation and inundation at the Mediterranean coast of Israel using high resolution bathymetric and topographic grid , aided by additional tsunami generation modelling tools simulating the initial stages of tsunami generation by earthquake induced tectonic plates rupture and movement or by landslide on the coastal shelf, as well as visualization tools, adapted by the first author under LINUX operating system as an integral modelling package.


2020 ◽  
Author(s):  
Fatin Izzati Minhat ◽  
◽  
Nazihah Azmi ◽  
Nazihah Azmi ◽  
Nur Hidayah Roseli ◽  
...  

2009 ◽  
Vol 46 (6) ◽  
pp. 403-423 ◽  
Author(s):  
Karem Azmy ◽  
Denis Lavoie

The Lower Ordovician St. George Group of western Newfoundland consists mainly of shallow-marine-platform carbonates (∼500 m thick). It is formed, from bottom to top, of the Watts Bight, Boat Harbour, Catoche, and Aguathuna formations. The top boundary of the group is marked by the regional St. George Unconformity. Outcrops and a few cores from western Newfoundland were sampled at high resolution and the extracted micritic materials were investigated for their petrographic and geochemical criteria to evaluate their degree of preservation. The δ13C and δ18O values of well-preserved micrite microsamples range from –4.2‰ to 0‰ (VPDB) and from –11.3‰ to –2.9‰ (VPDB), respectively. The δ13Ccarb profile of the St. George Group carbonates reveals several negative shifts, which vary between ∼2‰ and 3‰ and are generally associated with unconformities–disconformities or thin shale interbeds, thus reflecting the effect of or link with significant sea-level changes. The St. George Unconformity is associated with a negative δ13Ccarb shift (∼2‰) on the profile and correlated with major lowstand (around the end of Arenig) on the local sea-level reconstruction and also on those from the Baltic region and central Australia, thus suggesting that the St. George Group Unconformity might have likely had an eustatic component that contributed to the development–enhancement of the paleomargin. Other similar δ13Ccarb shifts have been recorded on the St. George profile, but it is hard to evaluate their global extension due to the low resolution of the documented global Lower Ordovician (Tremadoc – middle Arenig) δ13Ccarb profile.


2013 ◽  
Vol 38 (1) ◽  
pp. 19-54 ◽  
Author(s):  
Vena W. Chu

Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.


Author(s):  
Adarsh V Srinivasan ◽  
Mr. N. Saritakumar

In this paper, either a pre-recorded audio or a newly recorded audio is processed and analysed using the LabVIEW Software by National Instruments. All the data such as bitrate, number of channels, frequency, sampling rate of the Audio are analyzed and improvising the signal by a few operations like Amplification, De-Amplification, Inversion and Interlacing of Audio Signals are done. In LabVIEW, there are a few Sub Virtual Instrument’s available for Reading and Writing Audio in .wav formats and using them and array Sub Virtual Instrument, all the processing are done. KEYWORDS: Virtual Instrumentation (VI), LabVIEW (LV), Audio, Processing, audio array.


2021 ◽  
Author(s):  
Abdul Muqtadir Khan ◽  
Denis Emelyanov ◽  
Rostislav Romanovskii ◽  
Olga Nevvonen

Abstract Different applications of fracture bridging and diversion are used regularly in carbonate acid fracturing without an in-depth understanding of the physical phenomena that dominate the processes involved in the bridging and diversion process. The extension of modeling capabilities in conjunction with yard-scale and field-scale experiences will increase our understanding of these processes. A robust multimodal diversion pill and polylactic acid fiber-laden viscous acid were utilized for near-wellbore and far-field bridging, respectively. Numerous field treatments demonstrated the uncertainty of achieving effective diversion. An existing multiphysics model was extended to develop functionalities to model diversions at different scale. Extensive laboratory testing was conducted to understand the scale of bridging and diversion mechanisms. Finally, a bridging yard test was designed, and field case studies were used to integrate all the branches. Field cases showed a diversion pressure up to 4,000 psi depending on perforation strategy, pill volume, and pill seating rate. Correlations showed the interdependence of multiple parameters in diversion processes. The field studies motivated modeling capabilities to simulate the critical diversion processes at high resolution and quality. The model simulates diverting agents that reduce leakoff in the fracture area and their effects on fracture geometry. The approach considers the acid reaction kinetics coupled with geomechanics and fluid transport. Different diverting agent concentrations required for bridging can be modeled effectively. A yard test was designed to confirm the integrity of the pill material through completion valves (minimum inside diameter 9.5 mm) and analyzed with high-resolution imaging. All the theoretical, mathematical, and numerical findings from modeling were integrated with laboratory- and yard-scale experimentation results to develop and validate near-wellbore and far-field diversion modeling. Analytical correlations were formulated from injection rate, particulate material concentration, pill volumes, fracture width, etc., to incorporate and validate the model. This study enhances understanding of the different diversion mechanisms from high-fidelity theoretical modeling approach integrated with a practical experimental view at laboratory and field scale. Current comprehensive research has significant potential to make the modeling approach a reliable method to develop tight carbonate formations around the globe.


2020 ◽  
Author(s):  
Bingxin Xu ◽  
Xinyu Fan ◽  
Shuai Wang ◽  
Zuyuan He

Abstract Optical frequency comb with evenly spaced lines over a broad bandwidth has revolutionized the fields of optical metrology and spectroscopy. Here, we propose an electro-optic dual-comb spectroscopy to real-time interleave the spectrum with high resolution, in which two electro-optic frequency combs are seed by swept light source. An interleaved spectrum with a high resolution is real-time recorded by the sweeping probe comb without gap time, which is multi-heterodyne detected by the sweeping local comb. The proposed scheme measures a spectrum spanning 304 GHz in 1.6 ms with a resolution of 1 MHz, and reaches a spectral sampling rate of 1.9*108 points/s under Nyquist-limitation. A reflectance spectrum is measured with a calculated figure-of-merit of 4.2*108, which shows great prospect for fast and high-resolution applications.


Measurement ◽  
2020 ◽  
Vol 166 ◽  
pp. 108175
Author(s):  
Yijiu Zhao ◽  
Houjun Wang ◽  
Yanze Zheng ◽  
Yi Zhuang ◽  
Naixin Zhou

Sign in / Sign up

Export Citation Format

Share Document