scholarly journals Dealing with variability in water availability: the case of the Verde Grande River basin, Brazil

Author(s):  
B. Collischonn ◽  
A. V. Lopes ◽  
A. R. Pante

Abstract. This paper presents a water resources management strategy developed by the Brazilian National Water Agency (ANA) to cope with the conflicts between water users in the Verde Grande River basin, located at the southern border of the Brazilian semi-arid region. The basin is dominated by water-demanding fruit irrigation agriculture, which has grown significantly and without adequate water use control, over the last 30 years. The current water demand for irrigation exceeds water availability (understood as a 95 % percentile of the flow duration curve) in a ratio of three to one, meaning that downstream water users are experiencing more frequent water shortages than upstream ones. The management strategy implemented in 2008 has the objective of equalizing risk for all water users and consists of a set of rules designed to restrict water withdrawals according to current river water level (indicative of water availability) and water demand. Under that rule, larger farmers have proportionally larger reductions in water use, preserving small subsistence irrigators. Moreover, dry season streamflow is forecasted at strategic points by the end of every rainy season, providing evaluation of shortage risk. Thus, water users are informed about the forecasts and corresponding restrictions well in advance, allowing for anticipated planning of irrigated areas and practices. In order to enforce restriction rules, water meters were installed in all larger water users and inefficient farmers were obligated to improve their irrigation systems’ performance. Finally, increases in irrigated area are only allowed in the case of annual crops and during months of higher water availability (November to June). The strategy differs from convectional approached based only on water use priority and has been successful in dealing with natural variability of water availability, allowing more water to be used in wet years and managing risk in an isonomic manner during dry years.

Author(s):  
C. Alex Pellett ◽  
Thomas Walker

The state of South Carolina is currently in a multiyear process of updating the State Water Plan, and water demand projections are an important component of that work. Predictions of water demand are inherently uncertain, but perhaps they can benefit from input by a diverse and robust sample of water users. A brief survey regarding water use was distributed to 780 permitted and registered water users in the state, including all water suppliers, industries, and irrigators withdrawing more than 3 million gallons in a month or more than 100,000 gallons in a day. There are 316 responses to 10 quantitative survey items that are summarized, presented, and discussed. Results indicate that most respondents plan to maintain their current levels of water use, consider their withdrawal reports to be accurate within 10%, and believe their current water supplies to be critical to their enterprise. A qualitative review of comments noted on survey responses includes a variety of potential drivers of water demand. The results motivate a discussion of recommendations for future research.


2011 ◽  
Vol 15 (12) ◽  
pp. 3785-3808 ◽  
Author(s):  
Y. Wada ◽  
L. P. H. van Beek ◽  
M. F. P. Bierkens

Abstract. During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate variability but also growing water demand, desalinated water use and non-renewable groundwater abstraction over the period 1960–2001 at a spatial resolution of 0.5°. Agricultural water demand is estimated based on past extents of irrigated areas and livestock densities. We approximate past economic development based on GDP, energy and household consumption and electricity production, which are subsequently used together with population numbers to estimate industrial and domestic water demand. Climate variability is expressed by simulated blue water availability defined by freshwater in rivers, lakes, wetlands and reservoirs by means of the global hydrological model PCR-GLOBWB. We thus define blue water stress by comparing blue water availability with corresponding net total blue water demand by means of the commonly used, Water Scarcity Index. The results show a drastic increase in the global population living under water-stressed conditions (i.e. moderate to high water stress) due to growing water demand, primarily for irrigation, which has more than doubled from 1708/818 to 3708/1832 km3 yr−1 (gross/net) over the period 1960–2000. We estimate that 800 million people or 27% of the global population were living under water-stressed conditions for 1960. This number is eventually increased to 2.6 billion or 43% for 2000. Our results indicate that increased water demand is a decisive factor for heightened water stress in various regions such as India and North China, enhancing the intensity of water stress up to 200%, while climate variability is often a main determinant of extreme events. However, our results also suggest that in several emerging and developing economies (e.g. India, Turkey, Romania and Cuba) some of past extreme events were anthropogenically driven due to increased water demand rather than being climate-induced.


2015 ◽  
Vol 12 (9) ◽  
pp. 8727-8759 ◽  
Author(s):  
U. A. Amarasinghe ◽  
L. Mutuwatte ◽  
L. Surinaidu ◽  
S. Anand ◽  
S. K. Jain

Abstract. The Ganges River Basin may have a major pending water crisis. Although the basin has abundant surface water and groundwater resources, the seasonal monsoon causes a mismatch between supply and demand as well as flooding. Water availability and flood potential is high during the 3–4 months of the monsoon season. Yet, the highest demands occur during the 8–9 months of the non-monsoon period. Addressing this mismatch requires substantial additional storage for both flood reduction and improvements in water supply. Due to hydrogeological, environmental, and social constraints, expansion of surface storage in the Ganges River Basin is problematic. A range of interventions that focus more on the use of subsurface storage (SSS), and on the acceleration of surface–subsurface water exchange, have long been known as the "Ganges Water Machine". One approach for providing such SSS is through additional pumping prior to the onset of the monsoon season. An important necessary condition for creating such SSS is the degree of unmet water demand. This paper highlights that an unmet water demand ranging from 59 to 119 Bm3 exists under two different irrigation water use scenarios: (i) to increase Rabi and hot weather season irrigation to the entire irrigable area, and (ii) to provide Rabi and hot weather season irrigation to the entire cropped area. This paper shows that SSS can enhance water supply, and provide benefits for irrigation and other water use sectors. In addition, it can buffer the inherent variability in water supply and mitigate extreme flooding, especially in the downstream parts of the basin. It can also increase river flow during low-flow months via baseflow or enable the re-allocation of irrigation canal water. Importantly, SSS can mitigate the negative effects of both flooding and water scarcity in the same year, which often affects the most vulnerable segments of society – women and children, the poor and other disadvantaged social groups.


Agromet ◽  
2017 ◽  
Vol 31 (2) ◽  
pp. 89
Author(s):  
I Putu Santikayasa ◽  
. Agis ◽  
Siti Maesaroh

<p>The use of economic approach on water allocation are inclusively becoming integrated on water resource management. Competing among water users is expected to escalate due to increasing water demand despite of limited water availability. This research used economic approach aiming to optimize water allocation in Ambang-Brantas subbasin, Malang, and to calculate the total benefit for different sectors of allocated water. We distinguished two scenarios (2012–2015 and 2016–2035) to reflect the existing and the future water allocation. We modelled the water allocation with the Aquarious application. In this subbasin, three main sectors of water users were identified i.e. domestic, agriculture, and industries. The results showed that the agricultural sector was the highest water demand compared to other sectors. This finding was consistent both monthly and annually. Our findings revealed that industries sector show the maximum benefit per unit water used. Based on the scenario, either a decreasing water availability by 10% or an increasing water demand by 10% will decline the total benefit by 44%. If we increase the scenario to 20% it will reduce the total benefit until 71%. This modelling exercise using Aquarius application shows that the model is a promising tool for water resource management with integration of economic approach.</p>


Author(s):  
Peter Kishiwa ◽  
Joel Nobert ◽  
Victor Kongo ◽  
Preksedis Ndomba

Abstract. This study was designed to investigate the dynamics of current and future surface water availability for different water users in the upper Pangani River Basin under changing climate. A multi-tier modeling technique was used in the study, by coupling the Soil and Water Assessment Tool (SWAT) and Water Evaluation And Planning (WEAP) models, to simulate streamflows under climate change and assess scenarios of future water availability to different socio-economic activities by year 2060. Six common Global Circulation Models (GCMs) from WCRP-CMIP3 with emissions Scenario A2 were selected. These are HadCM3, HadGEM1, ECHAM5, MIROC3.2MED, GFDLCM2.1 and CSIROMK3. They were downscaled by using LARS-WG to station scale. The SWAT model was calibrated with observed data and utilized the LARS-WG outputs to generate future streamflows before being used as input to WEAP model to assess future water availability to different socio-economic activities. GCMs results show future rainfall increase in upper Pangani River Basin between 16–18 % in 2050s relative to 1980–1999 periods. Temperature is projected to increase by an average of 2 ∘C in 2050s, relative to baseline period. Long-term mean streamflows is expected to increase by approximately 10 %. However, future peak flows are estimated to be lower than the prevailing average peak flows. Nevertheless, the overall annual water demand in Pangani basin will increase from 1879.73 Mm3 at present (2011) to 3249.69 Mm3 in the future (2060s), resulting to unmet demand of 1673.8 Mm3 (51.5 %). The impact of future shortage will be more severe in irrigation where 71.12 % of its future demand will be unmet. Future water demands of Hydropower and Livestock will be unmet by 27.47 and 1.41 % respectively. However, future domestic water use will have no shortage. This calls for planning of current and future surface water use in the upper Pangani River Basin.


2015 ◽  
Vol 10 (1) ◽  
pp. 152-163 ◽  
Author(s):  
Mario Maiolo ◽  
Daniela Pantusa

Water shortages are due to a number of factors such as pollution of sources, decrease of water availability, climate change, wrong use of water resources and the inaccurate management of water systems, including the physiological dysfunctions of waterwork facilities. In order to improve the planning of emergency management, forecasting and prevention of this type of risk, it is helpful to address the study of the risk of potable water use. Through the analysis of water systems in all its components, key factors have been identified that influence the incorrect operation of systems and it was possible to define the risk for potable water use in order to formulate an initial proposal for an estimation method.


2012 ◽  
Vol 66 (4) ◽  
pp. 879-886 ◽  
Author(s):  
A. Kuhn ◽  
W. Britz

Hydro-economic river basin models (HERBM) based on mathematical programming are conventionally formulated as explicit ‘aggregate optimization’ problems with a single, aggregate objective function. Often unintended, this format implicitly assumes that decisions on water allocation are made via central planning or functioning markets such as to maximize social welfare. In the absence of perfect water markets, however, individually optimal decisions by water users will differ from the social optimum. Classical aggregate HERBMs cannot simulate that situation and thus might be unable to describe existing institutions governing access to water and might produce biased results for alternative ones. We propose a new solution format for HERBMs, based on the format of the mixed complementarity problem (MCP), where modified shadow price relations express spatial externalities resulting from asymmetric access to water use. This new problem format, as opposed to commonly used linear (LP) or non-linear programming (NLP) approaches, enables the simultaneous simulation of numerous ‘independent optimization’ decisions by multiple water users while maintaining physical interdependences based on water use and flow in the river basin. We show that the alternative problem format allows the formulation HERBMs that yield more realistic results when comparing different water management institutions.


2003 ◽  
Vol 47 (6) ◽  
pp. 25-32 ◽  
Author(s):  
B.P.F. Braga

This paper presents the conceptual framework for regulating water use in cases where water is a public good. Public agencies with an independent directive board can successfully manage such a situation. Through a comprehensive system of water permits, charging and control it is possible to effectively manage water resources. Together with the conceptual framework a practical application is presented. The case of the National Water Agency of Brazil - ANA - shows that it is possible to implement modern water resources management concepts in less developed countries. The benefits of this institutional arrangement are demonstrated in the case of managing water conflicts among water users. Two situations are described: the semi-arid water allocation for agricultural use in the Jaraguaribe River Basin in Ceara State and the conflict between the hydropower and navigation sectors in the Parana River Basin.


2018 ◽  
Vol 04 (01) ◽  
pp. 1650034
Author(s):  
Livia Rasche ◽  
Uwe A. Schneider ◽  
Martha Bolívar Lobato ◽  
Ruth Sos Del Diego ◽  
Tobias Stacke

The Magdalena watershed in Colombia is the most densely populated and economically important region in the country. While Colombia is generally classified as a water-rich country, it is expected that water shortages will occur in the future without adequate planning and investments in water management infrastructures. Currently, even though all instruments required for an integrated water resource management are present in Colombia, they are employed independently from each other and thus not very efficient. To estimate the potential benefits of a more coordinated water management planning, especially in consideration of projected changes in water availability and demand in the near future, we developed a constrained welfare maximization model of the watershed (CAMARI). We ran the model with three different scenarios of future water availability, based on RCPs 2.6, 4.5 and 6.0, and with two planning modes: coordinated and uncoordinated. The results show that a coordinated planning of investments in water management infrastructures increases welfare by 2–18% over the next century in the Magdalena river basin, which corresponds to average annual savings from US$ 610 million to US$ 6.4 billion. Benefits increase as water availability decreases. Our results also show that water demand from the agricultural sector is projected to rise in future, which further underlines the necessity for robust governance mechanisms to keep conflicts between sectors to a minimum.


Sign in / Sign up

Export Citation Format

Share Document