scholarly journals Frequency anomaly of groundwater level before major earthquakes in Taiwan

Author(s):  
T.-K. Yeh ◽  
C.-H. Chen ◽  
C.-H. Wang ◽  
S. Wen

Abstract. Anomalous decreases on water levels were observed in 78 % of wells in central Taiwan about 250 days before the Chi-Chi earthquake whose magnitude is 7.6 on 20 September 1999. Variations in groundwater levels measured on anomalous wells from 1 August 1997 to 19 September 1999, were transferred into the frequency domain to unveil frequency characteristics. Analytical results show that amplitudes at the frequency band between 0.02 and 0.04 day−1 generally maintained at low stage and were apparently enhanced a few weeks before the Chi-Chi earthquake. Variations of amplitude at this particular frequency band were further examined along with other Taiwan earthquakes whose magnitude is larger than 6 from 1 August 1997 to 31 December 2009. Features of the enhanced amplitudes at the frequency band are consistently observed prior to the other two earthquakes during the 12.5-year study period. Result confirms that abnormal rise and fall changes in groundwater level yield an agreement with forward and backward surface displacements around epicenter prior to the Chi-Chi earthquake.

2013 ◽  
Vol 17 (5) ◽  
pp. 1693-1703 ◽  
Author(s):  
C.-H. Chen ◽  
C.-H. Wang ◽  
S. Wen ◽  
T.-K. Yeh ◽  
C.-H. Lin ◽  
...  

Abstract. Unusual decreases of water levels were consistently observed in 78% (= 42/54) of wells in the Choshuichi Alluvial Fan of central Taiwan about 250 days before the Chi-Chi earthquake (M = 7.6 on 20 September 1999) while possible factors of barometric pressure, earth tides, precipitation as well as artificial pumping were removed. Variations in groundwater levels measured on anomalous wells from 1 August 1997 to 19 September 1999, which covers the 250 day unusual decreases, were transferred into the frequency domain to unveil frequency characteristics associated with the Chi-Chi earthquake. Analytical results show that amplitudes at the frequency band between 0.02 day−1 and 0.04 day−1 generally maintained at the low stage and were apparently enhanced a few weeks before the Chi-Chi earthquake. Variations of amplitude at this particular frequency band were further examined along with other Taiwan earthquakes (M > 6) from 1 August 1997 to 31 December 2009. Features of the enhanced amplitudes at the frequency band are consistently observed prior to the other two earthquakes (the Rei-Li and Ming-Jian earthquakes) during the 12.5 yr study period. In addition, surface displacements recorded from GPS, which provides insights into understanding stress status in subsurface during the Chi-Chi earthquake, are also inspected. The result confirms that abnormal rise and fall changes in groundwater level yield an agreement with forward and backward surface displacements around the epicentre prior to the Chi-Chi earthquake.


2012 ◽  
Vol 9 (6) ◽  
pp. 6979-7000
Author(s):  
C.-H. Chen ◽  
C.-H. Wang ◽  
S. Wen ◽  
T.-K. Yeh ◽  
C.-H. Lin ◽  
...  

Abstract. Unusual decreases in water levels were consistently observed in 78% (=42/54) of the wells in the Choshuichi Alluvial Fan of central Taiwan roughly 150 days before the Chi-Chi earthquake (M = 7.6 on 20 September 1999) when the influences of barometric pressure, earth tides, precipitation and artificial pumping were removed. Variations in groundwater levels measured in the anomalous wells between 1 August 1997 and 19 September 1999, the time period covering the unusual decreases, were transferred into the frequency domain to examine anomalous frequency bands associated with the Chi-Chi earthquake. Analytical results show that amplitudes at the frequency band between 0.02 day−1 and 0.04 day−1 were generally maintained at the low stage and were enhanced in the few weeks before the Chi-Chi earthquake. Variations in amplitude within this particular frequency band were further examined in association with earthquakes (M > 6) between 1 August 1997 and 31 December 2009. Enhanced amplitude phenomena are consistently observed prior to the other two earthquakes (the Rei-Li and Ming-Jian earthquakes) during the 12.5 yr, which sheds a promising light on research into precursors of strong earthquakes when combined with other geophysical observations such as geomagnetic anomalies and crustal displacements.


Author(s):  
Soo-Hyoung Lee ◽  
Jae Min Lee ◽  
Sang-Ho Moon ◽  
Kyoochul Ha ◽  
Yongcheol Kim ◽  
...  

AbstractHydrogeological responses to earthquakes such as changes in groundwater level, temperature, and chemistry, have been observed for several decades. This study examines behavior associated with ML 5.8 and ML 5.1 earthquakes that occurred on 12 September 2016 near Gyeongju, a city located on the southeast coast of the Korean peninsula. The ML 5.8 event stands as the largest recorded earthquake in South Korea since the advent of modern recording systems. There was considerable damage associated with the earthquakes and many aftershocks. Records from monitoring wells located about 135 km west of the epicenter displayed various patterns of change in both water level and temperature. There were transient-type, step-like-type (up and down), and persistent-type (rise and fall) changes in water levels. The water temperature changes were of transient, shift-change, and tendency-change types. Transient changes in the groundwater level and temperature were particularly well developed in monitoring wells installed along a major boundary fault that bisected the study area. These changes were interpreted as representing an aquifer system deformed by seismic waves. The various patterns in groundwater level and temperature, therefore, suggested that seismic waves impacted the fractured units through the reactivation of fractures, joints, and microcracks, which resulted from a pulse in fluid pressure. This study points to the value of long-term monitoring efforts, which in this case were able to provide detailed information needed to manage the groundwater resources in areas potentially affected by further earthquakes.


2020 ◽  
Vol 24 (12) ◽  
pp. 5713-5744
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope–stream connectivity controls runoff generation, during events and during baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow can not be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope–stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. As a first step, a new data analysis scheme was developed, separating the aspects of (a) response timing and (b) extent of water level change. This provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope–stream connectivity at the catchment scale. Stream water levels and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm, we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope–stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high; however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into the connectivity and event response of the corresponding headwater catchments. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


2011 ◽  
Vol 91 (1) ◽  
pp. 29-37 ◽  
Author(s):  
Aidi Huo ◽  
Xunhong Chen ◽  
Huike Li ◽  
Ming Hou ◽  
Xiaojing Hou

Huo, A., Chen, X., Li, H., Hou, M. and Hou, X. 2011. Development and testing of a remote sensing-based model for estimating groundwater levels in aeolian desert areas of China. Can. J. Soil Sci. 91: 29–37. Regional groundwater level is an important data set for understanding the relationships between groundwater resources and regional ecological environments. The decline in water table levels leads to vegetation degradation and thus affects the ecological environment. Such a negative effect is especially apparent in the desertification areas. In this study, a remote-sensing based method was proposed to predict the distribution of the regional groundwater level in an aeolian desert area in northern China. The study used the Moderate Resolution Imaging Spectroradiometer (MODIS) remote sensing data and field investigations. Based on field investigation of groundwater level, soil moisture, and other supporting information in the aeolian desert area, as well as the soil moisture distribution derived from the MODIS images, empirical equations describing the relationship between the soil moisture and groundwater level were obtained. The groundwater levels derived using the MODIS image data were verified by groundwater levels measured from 58 wells. The results show that the correlation coefficient between the measured groundwater levels and the remote sensing-based estimated water levels was 0.868, indicating that the error is small and the predictions closely reflect the real water levels. This model can be used to predict groundwater levels in aeolian desert areas based on remote sensing data sets.


2020 ◽  
Author(s):  
Daniel Beiter ◽  
Markus Weiler ◽  
Theresa Blume

Abstract. Hillslope-stream connectivity controls runoff generation, both during events and baseflow conditions. However, assessing subsurface connectivity is a challenging task, as it occurs in the hidden subsurface domain where water flow cannot be easily observed. We therefore investigated if the results of a joint analysis of rainfall event responses of near-stream groundwater levels and stream water levels could serve as a viable proxy for hillslope-stream connectivity. The analysis focuses on the extent of response, correlations, lag times and synchronicity. A newly developed data analysis scheme of separating the aspects of (a) response timing and (b) extent of water level change provides new perspectives on the relationship between groundwater and stream responses. In a second step we investigated if this analysis can give an indication of hillslope-stream connectivity at the catchment scale. Stream- and groundwater levels were measured at five different hillslopes over 5 to 6 years. Using a new detection algorithm we extracted 706 rainfall response events for subsequent analysis. Carrying out this analysis in two different geological regions (schist and marls) allowed us to test the usefulness of the proxy under different hydrological settings while also providing insight into the geologically-driven differences in response behaviour. For rainfall events with low initial groundwater level, groundwater level responses often lag behind the stream with respect to the start of rise and the time of peak. This lag disappears at high antecedent groundwater levels. At low groundwater levels the relationship between groundwater and stream water level responses to rainfall are highly variable, while at high groundwater levels, above a certain threshold, this relationship tends to become more uniform. The same threshold was able to predict increased likelihood for high runoff coefficients, indicating a strong increase in connectivity once the groundwater level threshold was surpassed. The joint analysis of shallow near-stream groundwater and stream water levels provided information on the presence or absence and to a certain extent also on the degree of subsurface hillslope-stream connectivity. The underlying threshold processes were interpreted as transmissivity feedback in the marls and fill-and-spill in the schist. The value of these measurements is high, however, time series of several years and a large number of events are necessary to produce representative results. We also find that locally measured thresholds in groundwater levels can provide insight into catchment-scale connectivity and event response. If the location of the well is chosen wisely, a single time series of shallow groundwater can indicate if the catchment is in a state of high or low connectivity.


1994 ◽  
Vol 267 (3) ◽  
pp. R830-R840 ◽  
Author(s):  
M. J. Kenney

Frequency-domain analyses were used to characterize basal sympathetic nerve discharge (SND) and to determine the relationships between the activity recorded simultaneously from sympathetic nerves in chloralose-anesthetized, baroreceptor-innervated rats. Discharges were recorded from the splanchnic, renal, and lumbar nerves. The following observations were made. 1) Approximately 65-75% of total power in SND was contained below 9 Hz in either baroreceptor-innervated rats or baroreceptor-denervated rats. 2) Coherence values relating the activity of two nerves were significantly different from zero within this frequency band. 3) The interval between the discharges of two sympathetic nerves was either frequency dependent or constant within the coherent frequency band. 4) The frequency components of SND and the relationships between the activity in two sympathetic nerves could be altered during periods of acute stress. These results suggest that the system responsible for basal SND in rats is composed of either multiple sympathetic generators or multiple filters arranged in parallel, which are capable of producing different outputs. The dynamic nature of these circuits was revealed by the changes that occurred during periods of acute stress.


Author(s):  
ALEKSANDRA CZUCHAJ ◽  
FILIP WOLNY ◽  
MAREK MARCINIAK

The aim of the presented research was to analyze the relation between three variables: the daily sum of precipitation, the surface water level and the groundwater level in the Różany Strumień basin located in Poznań, Poland. The correlation coefficient for the subsequent lags for each pair of variables time series has been calculated. The delay with which waters of the basin respond to precipitation varies significantly. Generally, stronger response to rainfall is observed for surface water levels as opposed to groundwater levels.


1984 ◽  
Vol 5 (1) ◽  
Author(s):  
L. Bjerkan

SummaryTime domain measurements of the bandwidth of concatenated cabled optical fibers at 1.3 μm has been carried out on two different cable constructions. Both time domain and frequency domain analysis are presented.For one cable type containing fibers exhibiting smooth frequency characteristics a concatenation exponent γ = 0.66 was found for a 9.5 km length of concatenated fibers. For the other cable type containing some fibers with irregular frequency characteristics such a fit was not possible for a 24 km length of concatenated fibers but an exponent γ = 0.65 could be fit to the last 14 km. Two splicing procedures were employed on the latter cable type, but no appreciable difference in the results was observed. When the frequency characteristic was regular the 3 dB optical bandwidth of the spliced fiber sections was found to be inversely proportional to therms pulse width broadening.The bandwidth-pulsewidth product agreed with results obtained for Gaussian pulse shapes for one cable type and hyperbolic secant pulse shapes for the other cable type.


2012 ◽  
Vol 20 (1) ◽  
pp. 29-34
Author(s):  
M. Pásztorová ◽  
J. Skalová ◽  
J. Vitková ◽  
M. Juráková

Development of groundwater levels as a consequense of climate changeClimate change poses a significant threat to many wetland ecosystems. Wetlands exist in a transition zone between aquatic and terrestrial environments and can be affected by slight alterations in regional hydrology, which can influence climate change through air temperature changes, regional changes in a rainfall regime, surface run-off, snow, duration of the winter season, groundwater resources and evapotranspiration.Climate change in wetland areas is most significantly reflected in water levels and adjacent groundwater levels, and it can significantly change the hydroecological proportions of wetland ecosystems and endanger rare wetland fauna and flora communities. The focus of this paper is the impact of climate change on the groundwater level in the Záhorie Protected Landscape area in the Zelienka national nature reservation. The impact of the climate change was solved through the meteorological characteristic changes adapted by the GISS98 and CCCM2000 climatic scenarios. The groundwater level was determined by the HYDRUS-ET model for the time frames 2010, 2030 and 2075 in 20-year time intervals and consequently compared to the reference period of 1971-1990.


Sign in / Sign up

Export Citation Format

Share Document