scholarly journals The Subhercynian Basin: an example of an intraplate foreland basin due to a broken plate

Solid Earth ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 2425-2438
Author(s):  
David Hindle ◽  
Jonas Kley

Abstract. The Late Cretaceous intraplate shortening event in central western Europe is associated with a number of marine basins of relatively high amplitude and short wavelength (2–3 km depth and 20–100 km width). In particular, the Harz Mountains, a basement uplift on a single, relatively steeply dipping basement thrust, have filled the adjacent Subhercynian Cretaceous Basin with their erosive product, proving that the two were related and synchronous. The problem of generating subsidence of this general style and geometry in an intraplate setting is dealt with here by using an elastic flexural model conditioned to take account of basement thrusts as weak zones in the lithosphere. Using a relatively simple configuration of this kind, we reproduce many of the basic features of the Subhercynian Cretaceous Basin and related basement thrusts. As a result, we suggest that overall, it shares many characteristics with larger-scale foreland basins associated with collisional orogens on plate boundaries.

2020 ◽  
Author(s):  
David Hindle ◽  
Jonas Kley

Abstract. The Late Cretaceous, intraplate shortening event in Central Western Europe is associated with a number of marine basins of relatively high amplitude and short wavelength (2–3 km depth and 20–100 km width). In particular, the Harz Mountains, a basement uplift on a single, relatively steeply dipping, basement thrust, have filled the adjacent Subhercynian Cretaceous Basin with their erosive product, proving that the two were related and synchronous. The problem of generating subsidence of this general style and geometry in an intraplate setting is dealt with here, by using an elastic flexural model conditioned to take account of basement thrusts as weak zones in the lithosphere. Using a relatively simple configuration of this kind, we reproduce many of the basic features of the Subhercynian Cretaceous Basin and related basement thrusts. As a result, we suggest that overall, these basins share many characteristics with larger scale, foreland basins associated with collisional orogens on plate boundaries.


Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
Andrea Di Capua ◽  
Federica Barilaro ◽  
Gianluca Groppelli

This work critically reviews the Eocene–Oligocene source-to-sink systems accumulating volcanogenic sequences in the basins around the Alps. Through the years, these volcanogenic sequences have been correlated to the plutonic bodies along the Periadriatic Fault System, the main tectonic lineament running from West to East within the axis of the belt. Starting from the large amounts of data present in literature, for the first time we present an integrated 4D model on the evolution of the sediment pathways that once connected the magmatic sources to the basins. The magmatic systems started to develop during the Eocene in the Alps, supplying detritus to the Adriatic Foredeep. The progradation of volcanogenic sequences in the Northern Alpine Foreland Basin is subsequent and probably was favoured by the migration of the magmatic systems to the North and to the West. At around 30 Ma, the Northern Apennine Foredeep also was fed by large volcanogenic inputs, but the palinspastic reconstruction of the Adriatic Foredeep, together with stratigraphic and petrographic data, allows us to safely exclude the Alps as volcanogenic sources. Beyond the regional case, this review underlines the importance of a solid stratigraphic approach in the reconstruction of the source-to-sink system evolution of any basin.


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


2012 ◽  
Vol 25 (2) ◽  
pp. 149-171 ◽  
Author(s):  
Eduard Saura ◽  
Jean-Christophe Embry ◽  
Jaume Vergés ◽  
David W. Hunt ◽  
Emilio Casciello ◽  
...  

2021 ◽  
Author(s):  
Tom Vincent Schintgen ◽  
Inga Sigrun Moeck

Abstract The Molasse Basin in Southern Germany is part of the North Alpine Foreland Basin and hosts the largest accumulation of deep geothermal production fields in Central Europe. Despite the vast development of geothermal energy utilization projects especially in the Munich metropolitan region, the evolution of and control factors on the natural geothermal field are still debated. Especially seismic and deep well data from extensive oil and gas exploration in the Molasse Basin led to conceptual hydrogeological and thermal-hydraulic models. Corrected borehole-temperature data helped to constrain subsurface temperatures by geostatistical interpolation and facilitated the set-up of 3D temperature models. However, within the geothermally used Upper Jurassic (Malm) carbonate aquifer, temperature anomalies such as the Wasserburg Trough anomaly to the east of Munich and their underlying physical processes are yet poorly understood. From other foreland basins like the Alberta Basin in Western Canada, it is known that climate during the last ice age has a considerable effect even on subsurface temperatures up to two kilometres depth. Therefore, we study the impact of paleoclimatic changes on the Molasse Basin during the last 130 ka including the Würm glaciation. We consider the hydraulic and thermal effects of periglacial conditions like permafrost formation and the impact of the numerous glacial advances onto the Molasse Basin. The major difference between the thermal-hydraulic regime in the western and eastern parts of the Southern German Molasse Basin are delineated by calculating two contrasting permeability scenarios of the heterogeneously karstified Malm carbonate aquifer. Thermal-hydraulic modelling reveals the effect of recurrent glacial periods on the geothermally drillable subsurface, which is minor compared to the effect of permeability-related, continuous gravity-driven groundwater flow as a major heat transport mechanism. Practically, the results might help to reduce the exploration risk for geothermal energy projects in the Molasse Basin. More importantly, this study serves as a reference for the comparison and understanding of the interplay of high permeability aquifers, gravity-driven groundwater flow and paleoclimate in other orogenic foreland basins worldwide.


1992 ◽  
Vol 6 ◽  
pp. 14-14
Author(s):  
Gordon C. Baird ◽  
Timothy W. Lyons ◽  
Carlton E. Brett

Regional study of Middle-Late Ordovician and Middle-Late Devonian carbonate and siliciclastic deposits in the northern Appalachian foreland basin reveals a prominent pattern of eastward-darkening of marine mudrocks and associated fossils. Exoskeletons of certain trilobite genera transform from a saddle brown coloration in southern Ontario exposures to black and near-black in central and eastern New York. Similar eastward darkening of mudstones and argillaceous carbonate units is observed to be covariant with conodont color alteration (C.A.I.) values across this same region. This pattern is coupled with other lines of evidence for eastward increases in heat-of-burial for strata across New York State, indicating that the darkening is linked to this control. Laboratory heating of thermally “cold”, light-colored samples shows that this process can be simulated under controlled conditions. The darkening of fossils and mudrocks probably occurs due to thermal maturation of organic matter within these materials.Darkening of certain fossiliferous mudrock facies from color values as high as N 7.5 at a C.A.I. of 1.0 to those of N 2.5 at C.A.I. of 3.5 has important implications for paleoecological interpretations. Where obvious fossil-rich beds are absent and field work cursory, it might be tempting to infer a shelf-to-basin transition in the uprank direction where none exists. Where skeletal packstone and grainstone beds are common in thermally mature deposits it is possible that intervening dark-colored shales may be erroneously interpreted as basinal, organicrich (black) shales and the grain-supported beds as turbidites, when, in fact, such beds are shallow-shelf tempestites. We believe that similar value gradients should be present wherever local or regional heat-flow anomalies or differential burial patterns are developed. Foreland basins bordering orogens should contain such gradients and workers must be alert to this illusory color effect when working on complex facies in such settings. It is probable that many paleoenvironmental judgments may have been colored by misinterpretations of this type.


2020 ◽  
pp. 1-115
Author(s):  
Luis Pachón-Parra ◽  
Paul Mann ◽  
Nestor Cardozo

The Putumayo foreland basin (PFB) is an underexplored, hydrocarbon-bearing basin located in southernmost Colombia. The PFB forms a 250-km long segment of the 7000-km-long corridor of Late Cretaceous-Cenozoic foreland basins produced by eastward thrusting of the Andean mountain chain over Precambrian rocks of the South American craton. We use ∼4000 km of 2D seismic data tied to 28 exploratory wells to describe the basin-wide structure and stratigraphy of an underexplored hydrocarbon basin. Based on seismic interpretation and comparison with published works from the southward continuation of the PFB into Peru and Ecuador, three main across-strike, structural zones include: 1) the 20-km-wide, Western structural zone closest to the Andean mountain front characterized by inversion of older, Jurassic half-grabens during the late Miocene; 2) the 45-km-wide, Central structural zone characterized by moderately-inverted Jurassic half-grabens; and 3) the 120-km-wide, Eastern structural zone characterized by the 40-km-wide, N-S trending Caquetá arch. The five mainly clastic tectonosequences of the PFB include: 1) Lower Cretaceous pre-foreland basin deposits; 2) Upper Cretaceous-Paleocene foreland basin deposits; 3) Eocene foreland basin deposits related to the early uplift of the Eastern Cordillera; 4) Oligocene-Miocene underfilled, foreland basin deposits; and 5) Plio-Pleistocene overfilled, foreland basin deposits. We used 3D flexural modeling to identify the elastic thickness (Te) of the lithosphere below the PFB, in order to model the location of the sedimentary-related and tectonically-related forebulges of Cretaceous to Oligocene age. Flexural analysis shows two pulses of rapid, foreland-related subsidence first during the Late Cretaceous-early Paleocene and later during the Oligocene-Miocene. Despite the present-day oblique thrusting of the mountain front, flexure of the PFB basement has produced a tectonic forebulge now located in the Eastern structural zone and controls a basement high that forms the eastern, updip limit for most hydrocarbons found in the PFB.


2020 ◽  
Author(s):  
Laure Guerit ◽  
Delphine Rouby ◽  
Cécile Robin ◽  
François Guillocheau ◽  
Brendan Simon ◽  
...  

<p>Foreland basins that develop at the foot of collisional mountain belts accumulate sediments eroded from the ranges. They thus represent valuable archives of the evolution of orogenic systems through time. A few numerical models have investigated the infilling of foreland basins during the growth of an orogenic range and they provide conceptual frameworks for foreland stratigraphy. However, surface processes (erosion, sediment transport and deposition) are often quite basic in these models, and in the last decade, progress has been made in the description of surface processes and its implementation in numerical models. Recently, we developed a landscape evolution model able to describe the evolution of an eroding source coupled to a flexural sedimentary basin (Yuan et al, 2019, JGR; Guerit et al, 2019, Geology). This model takes into account erosion and deposition at the same time, and it thus allows a full dynamical coupling of the range and its foreland. We take advantage of this efficient numerical model to take another look at the stratigraphic evolution of a foreland basin and at the transmission of sediment signal from source to sink. <br>We use the model to simulate the evolution of a flexural retro-foreland basin coupled to an uplifting range and subjected to temporal variations in uplift and precipitation rates. Such variations affect the topography of the range: a lower uplift rate or an higher precipitation lead to a lower range. As a result, because the accommodation space available in the foreland is purely flexural, a decrease in uplift rate or an increase in precipitation rate will be marked by an erosional surface in the foreland basin. On the contrary, an increase in uplift rate or a decrease in precipitation rate will be preserved in the stratigraphy. Interestingly, although the two scenarios induce a different sediment signal from the sources, they are both recorded in the foreland basin as a transient increase in accumulation rate. Such a signal alone can therefore not be used to decipher the type of perturbation that affected the source.<br>Finally, we discuss the evolution of a natural range and coupled foreland basin, the Pyrenees and the Aquitaine Basin. We show that the spatial pattern of sediment deposition in the Aquitaine Basin is very consistent with the topographic evolution of the Pyrenees. However, this topographic evolution is not consistent with the climatic and tectonic reconstruction in the area since the Eocene, opening discussions among others about local vs regional effects. This work is part of the COLORS project, funded by Total.</p>


2011 ◽  
Vol 233-235 ◽  
pp. 2812-2815
Author(s):  
Hong Zhang

The paper chooses foreland basin as its research object. after summarizing the accumulation characteristics of the different phases and different parts of them, the common models of the whole foreland basin are given and the physical simulation experiments are carried out. It shows that the foreland basins experience three phases of evolution. Phase 1 is the period that the source rock and structure oil and gas traps form. Phase 2 is the period that multi-cycle reservoir and lithologic oil and gas pool form. phase 3 is the period that foreland uplift belt and fault anticline pool form. Then a foreland basins has three different belts including of thrust belt, foredeep and foreland slope belt, foreland uplift belt, and the belts have different accumulation models. With regard to the hydrocarbon accumulation period of the foreland basin, the thrust belt have precedence to other belt. foredeep and foreland slope belt forms the secondary pools. Foreland uplift belt accumulates hydrocarbon very quickly.


Sign in / Sign up

Export Citation Format

Share Document