scholarly journals The Impact of Seismic Interpretation Methods on the Analysis of Faults: A Case Study from the Snøhvit Field, Barents Sea

2020 ◽  
Author(s):  
Jennifer Cunningham ◽  
Nestor Cardozo ◽  
Chris Townsend ◽  
Richard Callow

Abstract. Five seismic interpretation experiments were conducted on an area of interest containing a fault relay in the Snøhvit field, Barents Sea, Norway, to understand how interpretation method impacts the analysis of fault and horizon morphologies, fault lengths, and vertical displacement (throw). The resulting horizon and fault interpretations from the least and most successful interpretation methods were further analysed to understand the impact of interpretation method on geological modelling and hydrocarbon volume calculation. Generally, the least dense manual interpretation method of horizons (32 inlines (ILs) x 32 crosslines (XLs), 400 m) and faults (32 ILs, 400 m) resulted in inaccurate fault and horizon interpretations and underdeveloped relay morphologies and throw that can be considered inadequate for any detailed geological analysis. The densest fault interpretations (4 ILs, 50 m) and auto-tracked horizons (1 IL x 1 XL, 12.5 m) provided the most detailed interpretations, most developed relay and fault morphologies and geologically realistic throw distributions. Analysis of the geological modelling proved that sparse interpretation grids generate significant issues in the model itself which make it geologically inaccurate and lead to misunderstanding of the structural evolution of the relay. Despite significant differences between the two models the calculated in-place petroleum reserves are broadly similar in the least and most dense experiments. However, when considered at field-scale the magnitude of the differences in volumes that are generated solely by the contrasting interpretation methodologies clearly demonstrates the importance of applying accurate interpretation strategies.

Solid Earth ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 741-764
Author(s):  
Jennifer E. Cunningham ◽  
Nestor Cardozo ◽  
Chris Townsend ◽  
Richard H. T. Callow

Abstract. Five seismic interpretation experiments were conducted on an area of interest containing a fault relay in the Snøhvit field, Barents Sea, Norway, to understand how the interpretation method impacts the analysis of fault and horizon morphologies, fault lengths, and throw. The resulting horizon and fault interpretations from the least and most successful interpretation methods were further analysed to understand their impact on geological modelling and hydrocarbon volume calculation. Generally, the least dense manual interpretation method of horizons (32 inlines and 32 crosslines; 32 ILs × 32 XLs, 400 m) and faults (32 ILs, 400 m) resulted in inaccurate fault and horizon interpretations and underdeveloped relay morphologies and throw, which are inadequate for any detailed geological analysis. The densest fault interpretations (4 ILs, 50 m) and 3D auto-tracked horizons (all ILs and XLs spaced 12.5 m) provided the most detailed interpretations, most developed relay and fault morphologies, and geologically realistic throw distributions. Sparse interpretation grids generate significant issues in the model itself, which make it geologically inaccurate and lead to misunderstanding of the structural evolution of the relay. Despite significant differences between the two models, the calculated in-place petroleum reserves are broadly similar in the least and most dense experiments. However, when considered at field scale, the differences in volumes that are generated by the contrasting interpretation methodologies clearly demonstrate the importance of applying accurate interpretation strategies.


2021 ◽  
Vol 13 (5) ◽  
pp. 874
Author(s):  
Yu Chen ◽  
Mohamed Ahmed ◽  
Natthachet Tangdamrongsub ◽  
Dorina Murgulet

The Nile River stretches from south to north throughout the Nile River Basin (NRB) in Northeast Africa. Ethiopia, where the Blue Nile originates, has begun the construction of the Grand Ethiopian Renaissance Dam (GERD), which will be used to generate electricity. However, the impact of the GERD on land deformation caused by significant water relocation has not been rigorously considered in the scientific research. In this study, we develop a novel approach for predicting large-scale land deformation induced by the construction of the GERD reservoir. We also investigate the limitations of using the Gravity Recovery and Climate Experiment Follow On (GRACE-FO) mission to detect GERD-induced land deformation. We simulated three land deformation scenarios related to filling the expected reservoir volume, 70 km3, using 5-, 10-, and 15-year filling scenarios. The results indicated: (i) trends in downward vertical displacement estimated at −17.79 ± 0.02, −8.90 ± 0.09, and −5.94 ± 0.05 mm/year, for the 5-, 10-, and 15-year filling scenarios, respectively; (ii) the western (eastern) parts of the GERD reservoir are estimated to move toward the reservoir’s center by +0.98 ± 0.01 (−0.98 ± 0.01), +0.48 ± 0.00 (−0.48 ± 0.00), and +0.33 ± 0.00 (−0.33 ± 0.00) mm/year, under the 5-, 10- and 15-year filling strategies, respectively; (iii) the northern part of the GERD reservoir is moving southward by +1.28 ± 0.02, +0.64 ± 0.01, and +0.43 ± 0.00 mm/year, while the southern part is moving northward by −3.75 ± 0.04, −1.87 ± 0.02, and −1.25 ± 0.01 mm/year, during the three examined scenarios, respectively; and (iv) the GRACE-FO mission can only detect 15% of the large-scale land deformation produced by the GERD reservoir. Methods and results demonstrated in this study provide insights into possible impacts of reservoir impoundment on land surface deformation, which can be adopted into the GERD project or similar future dam construction plans.


Author(s):  
Christian Acal ◽  
Ana M. Aguilera ◽  
Annalina Sarra ◽  
Adelia Evangelista ◽  
Tonio Di Battista ◽  
...  

AbstractFaced with novel coronavirus outbreak, the most hard-hit countries adopted a lockdown strategy to contrast the spread of virus. Many studies have already documented that the COVID-19 control actions have resulted in improved air quality locally and around the world. Following these lines of research, we focus on air quality changes in the urban territory of Chieti-Pescara (Central Italy), identified as an area of criticality in terms of air pollution. Concentrations of $$\hbox {NO}_{{2}}$$ NO 2 , $$\hbox {PM}_{{10}}$$ PM 10 , $$\hbox {PM}_{2.5}$$ PM 2.5 and benzene are used to evaluate air pollution changes in this Region. Data were measured by several monitoring stations over two specific periods: from 1st February to 10 th March 2020 (before lockdown period) and from 11st March 2020 to 18 th April 2020 (during lockdown period). The impact of lockdown on air quality is assessed through functional data analysis. Our work makes an important contribution to the analysis of variance for functional data (FANOVA). Specifically, a novel approach based on multivariate functional principal component analysis is introduced to tackle the multivariate FANOVA problem for independent measures, which is reduced to test multivariate homogeneity on the vectors of the most explicative principal components scores. Results of the present study suggest that the level of each pollutant changed during the confinement. Additionally, the differences in the mean functions of all pollutants according to the location and type of monitoring stations (background vs traffic), are ascribable to the $$\hbox {PM}_{{10}}$$ PM 10 and benzene concentrations for pre-lockdown and during-lockdown tenure, respectively. FANOVA has proven to be beneficial to monitoring the evolution of air quality in both periods of time. This can help environmental protection agencies in drawing a more holistic picture of air quality status in the area of interest.


2021 ◽  
Vol 17 (2) ◽  
pp. 155014772199961
Author(s):  
Zhongwei Shen ◽  
Hongxi Yin ◽  
Yanjun Liang ◽  
Rigele Maao ◽  
Lianyou Jing

A routing-benefited deployment algorithm combining static and dynamic layouts is proposed, and its comprehensive performance evaluation is given in this article. The proposed routing-benefited deployment algorithm is intended to provide a suitable network deployment and subsequent data transmission approach for underwater optical networking and communication. Static nodes are anchored for long-term monitoring, and movable nodes can adjust their depths based on the virtual force and move with the variation of area-of-interest changing. Then, nodes begin to collect data that they can monitor and transmit to sink nodes. Here, the underwater wireless optical communication model is described to actualize the real environment, and the vector-based forwarding protocol is particularly considered to compare the impact of different deployment algorithms on routing. It is shown by simulation experiment results that routing-benefited deployment algorithm outperforms several existing traditional virtual force deployment algorithms in terms of coverage, lifetime, energy consumption balance, packet-loss rate, and time-delay.


2020 ◽  
Vol 244 ◽  
pp. 439-447
Author(s):  
Aleksandr Ponomarev ◽  
Aleksandr Yusupov

The object of the study is a section of the gas and gas condensate collection system, consisting of an angle throttle installed on a xmas tree and a well piping located after the angle throttle. The aim of the study is to assess the impact of the flow velocity and wall shear stress (WSS) on the carbon dioxide corrosion rate in the area of interest and to come up with substantiated recommendations for the rational operation of the angle throttle in order to reduce the corrosion intensity. In the course of solving this problem, a technique was developed and subsequently applied to assess the influence of various factors on the rate of carbon dioxide corrosion. The technique is based on a sequence of different modeling methods: modeling the phase states of the extracted product, three-dimensional (solid) modeling of the investigated section, hydrodynamic flow modeling of the extracted product using the finite volume method, etc. The developed technique has broad possibilities for visualization of the obtained results, which allow identifying the sections most susceptible to the effects of carbon dioxide corrosion. The article shows that the average flow velocity and its local values are not the factors by which it is possible to predict the occurrence of carbon dioxide corrosion in the pipeline section after the angle throttle. The paper proves that WSS has prevailing effect on the corrosion intensity in the section after the angle choke. The zones of corrosion localization predicted according to the technique are compared with the real picture of corrosion propagation on the inner surface of the pipe, as a result of which recommendations for the rational operation of the angle throttle are formed.


2021 ◽  
Author(s):  
Yue Huang ◽  
Ruiwen Liao

Abstract The green economy has gained worldwide attention, especially in the urban agglomerations where population and economic activities are highly concentrated. However, what kind of urban agglomeration spatial structure is more conducive to promoting the green economy? No clear conclusions have been made. Here, we study the impact of urban agglomeration spatial structure on the green economy, and also reveal how urban agglomeration spatial structure influences the three subsystems of green economy. We find that: (1) urban agglomeration spatial structural evolution is closely related to green economy, while in the research period, most urban agglomerations are not located in the optimal range of the spatial structure that drives the green economy. (2) Towards polycentric spatial structure is contributive to green economic growth, however, the excessively polycentric could not benefit green economy. (3) The evolution of urban agglomeration spatial structure exerts heterogenous impacts on the three subsystems when green economy is decomposed into economic subsystem, resources subsystem, and environmental subsystem. Towards polycentric is more conducive to the improvement of economic subsystem and resource subsystem, while, the tendency to monocentric drives the environmental subsystem development. (4) Lastly, our conclusions enlighten the urban agglomeration development planning and spatial mode for approaching a better performance in green economy.


2018 ◽  
Vol 28 (1) ◽  
pp. 105-110
Author(s):  
Snezana Bardarova ◽  
Marija Magdincheva-Shopova ◽  
Monika Markovska ◽  
Bozhidar Milenkovski

Current developments in the global and national economics point to a number of problems faced by real entities in the real sector, and as a special area of interest for the scientific public there is a need to provide conditions for the smooth running of the reproduction processes in the enterprise and the realization the positive results of the operation. Enterprises are drivers of inclusive economic growth in the Republic of Macedonia and in creating productive and sustainable jobs.The new conception of the small enterprise as a carrier and engine of economic development is quite persuasive with its economic logic and reaffirms the small enterprise as a significant economic sector. The activities within the small enterprises are aimed at intensifying the results of the work by achieving a balance between objective possibilities and good working principles. The monitoring of the small enterprise, through the prism of its influence on economic growth and development, rejects the traditional view for small enterprises as security guards.The SME sector is a driver of inclusive economic growth in Macedonia and the creation of sustainable jobs increasing productivity. It also does not agree with the notion that small enterprises are economically inefficient organisms.With the third technological revolution in the countries with a developed market economy, the domination of the so-called. small economy, that is, the sector of small and medium enterprises. Today, small enterprises have a growing number of supporters who believe that small enterprises are carriers of innovation and entrepreneurship and are able to react quickly to changes in the environment. For years, the Republic of Macedonia has faced a high rate (29%, June 2013) of general unemployment, which remains a key challenge for stabilizing the economic and social development of the country. The subject of research in this paper is focused on conducting analysis of the active enterprises in the Republic of Macedonia by size, by sector and by number of employees, as well as analysis of the activity of the population and employment by sectors and by type of ownership of the enterprise in the period from 2013-2017.


Sign in / Sign up

Export Citation Format

Share Document