scholarly journals Ensemble-based assimilation of fractional snow covered area satellite retrievals to estimate snow distribution at a high Arctic site

2017 ◽  
Author(s):  
Kristoffer Aalstad ◽  
Sebastian Westermann ◽  
Thomas Vikhamar Schuler ◽  
Julia Boike ◽  
Laurent Bertino

Abstract. Snow, with high albedo, low thermal conductivity and large water holding capacity strongly modulates the surface energy and water balance, thus making it a critical factor in high-latitude and mountain environments. At the same time, already at medium spatial resolutions of 1 km, estimating the average and subgrid variability of the snow water equivalent (SWE) is challenging in remote sensing applications. In this study, we demonstrate an ensemble-based data assimilation scheme to estimate peak SWE distributions at such scales from a simple snow model driven by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (that is accessible from satellite products) to pre-melt SWE, while at the same time obtaining the subgrid scale distribution. Subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fractional snow covered area (fSCA) by means of the snow model. Assimilation of satellite-derived fSCA hence facilitates the constrained estimation of the average SWE and coefficient of variation, while taking into account uncertainties in both the model and assimilated data sets. Our method makes use of the ensemble-smoother with multiple data assimilation (ES-MDA) combined with analytical Gaussian anamorphosis to assimilate time series of MODIS and Sentinel-2 fSCA retrievals. The scheme is applied to high-Arctic sites near Ny Ålesund (79° N, Svalbard, Norway) where in-situ observations of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak subgrid SWE distributions on most of the occasions considered. Through the ES-MDA assimilation, the root mean squared error (RMSE) for the fSCA, peak mean SWE and subgrid coefficient of variation is improved by around 75 %, 60 % and 20 % respectively when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13 respectively. By comparing the performance of the ES-MDA to that of other ensemble-based batch smoother schemes, it was found that the ES-MDA either outperforms or at least nearly matches the performance of the other schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.

2018 ◽  
Vol 12 (1) ◽  
pp. 247-270 ◽  
Author(s):  
Kristoffer Aalstad ◽  
Sebastian Westermann ◽  
Thomas Vikhamar Schuler ◽  
Julia Boike ◽  
Laurent Bertino

Abstract. With its high albedo, low thermal conductivity and large water storing capacity, snow strongly modulates the surface energy and water balance, which makes it a critical factor in mid- to high-latitude and mountain environments. However, estimating the snow water equivalent (SWE) is challenging in remote-sensing applications already at medium spatial resolutions of 1 km. We present an ensemble-based data assimilation framework that estimates the peak subgrid SWE distribution (SSD) at the 1 km scale by assimilating fractional snow-covered area (fSCA) satellite retrievals in a simple snow model forced by downscaled reanalysis data. The basic idea is to relate the timing of the snow cover depletion (accessible from satellite products) to the peak SSD. Peak subgrid SWE is assumed to be lognormally distributed, which can be translated to a modeled time series of fSCA through the snow model. Assimilation of satellite-derived fSCA facilitates the estimation of the peak SSD, while taking into account uncertainties in both the model and the assimilated data sets. As an extension to previous studies, our method makes use of the novel (to snow data assimilation) ensemble smoother with multiple data assimilation (ES-MDA) scheme combined with analytical Gaussian anamorphosis to assimilate time series of Moderate Resolution Imaging Spectroradiometer (MODIS) and Sentinel-2 fSCA retrievals. The scheme is applied to Arctic sites near Ny-Ålesund (79° N, Svalbard, Norway) where field measurements of fSCA and SWE distributions are available. The method is able to successfully recover accurate estimates of peak SSD on most of the occasions considered. Through the ES-MDA assimilation, the root-mean-square error (RMSE) for the fSCA, peak mean SWE and peak subgrid coefficient of variation is improved by around 75, 60 and 20 %, respectively, when compared to the prior, yielding RMSEs of 0.01, 0.09 m water equivalent (w.e.) and 0.13, respectively. The ES-MDA either outperforms or at least nearly matches the performance of other ensemble-based batch smoother schemes with regards to various evaluation metrics. Given the modularity of the method, it could prove valuable for a range of satellite-era hydrometeorological reanalyses.


2020 ◽  
Author(s):  
Kristoffer Aalstad ◽  
Sebastian Westermann ◽  
Joel Fiddes ◽  
James McCreight ◽  
Laurent Bertino

<p>Accurately estimating the snow water equivalent (SWE) that is stored in the worlds mountains remains a challenging and important unsolved problem. The SWE reconstruction approach, where the remotely sensed seasonal depletion of fractional snow-covered area (fSCA) is used with a snow model to build up the snowpack in reverse, has been used for decades to help tackle this problem retrospectively. Despite some success, this deterministic approach ignores uncertainties in the snow model, the meteorological forcing, and the remotely sensed fSCA. A trade-off has also existed between the desired temporal and spatial resolution of the satellite-retrieved fSCA depletion. Recently, ensemble-based data assimilation techniques that can account for the uncertainties inherent in the reconstruction exercise have allowed for probabilistic snow reanalyses. In addition, new higher resolution optical satellite constellations such as Sentinel-2 and the PlanetScope cubesats have been launched into polar orbit, potentially eliminating the aforementioned trade-off.</p><p>We combine these two developments, namely ensemble-based data assimilation and the emerging remotely sensed data streams, to see if snow reanalyses can be improved at the hillslope (100 m) scale in complex terrain. As a first step, we develop accurate high-resolution binary snow-cover maps using a terrestrial automatic camera system installed on a mountaintop near Ny-Ålesund (Svalbard, Norway). These maps are used to validate fSCA retrieved from various satellite sensors (MODIS, Sentinel-2 MSI, and Landsat 8 OLI) using algorithms ranging from simple thresholding of the normalized difference snow index to spectral unmixing. Through the validation, we demonstrate that the spectral unmixing technique can obtain unbiased fSCA retrievals at the hillslope scale. Next, we move to the Mammoth Lakes basin in the Californian Sierra Nevada, USA, where we have access to independent validation data retrieved from several Airborne Snow Observatory (ASO) and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) flights. Using these airborne retrievals as a reference, we show that fSCA can be retrieved at the hillslope scale with reasonable accuracy at an unprecedented near daily revisit period using a combination of the Landsat, Sentinel-2 MSI, RapidEye, and PlanetScope satellite constellations. In a series of data assimilation experiments we show how the combination of these constellations can lead to significant improvements in hillslope scale snow reanalyses as gauged by various evaluation metrics. Furthermore, it is suggested that an iterative ensemble smoother data assimilation scheme can provide more robust SWE estimates than other smoothers that have previously been proposed for snow reanalysis. We briefly conclude with thoughts as to the current impediments to conducting a global hillslope scale snow reanalysis and propose avenues for further research, such as how snow reanalyses can help in the prediction exercise.</p>


2015 ◽  
Vol 16 (4) ◽  
pp. 1752-1772 ◽  
Author(s):  
Steven A. Margulis ◽  
Manuela Girotto ◽  
Gonzalo Cortés ◽  
Michael Durand

Abstract This paper presents a newly proposed data assimilation method for historical snow water equivalent SWE estimation using remotely sensed fractional snow-covered area fSCA. The newly proposed approach consists of a particle batch smoother (PBS), which is compared to a previously applied Kalman-based ensemble batch smoother (EnBS) approach. The methods were applied over the 27-yr Landsat 5 record at snow pillow and snow course in situ verification sites in the American River basin in the Sierra Nevada (United States). This basin is more densely vegetated and thus more challenging for SWE estimation than the previous applications of the EnBS. Both data assimilation methods provided significant improvement over the prior (modeling only) estimates, with both able to significantly reduce prior SWE biases. The prior RMSE values at the snow pillow and snow course sites were reduced by 68%–82% and 60%–68%, respectively, when applying the data assimilation methods. This result is encouraging for a basin like the American where the moderate to high forest cover will necessarily obscure more of the snow-covered ground surface than in previously examined, less-vegetated basins. The PBS generally outperformed the EnBS: for snow pillows the PBS RMSE was ~54% of that seen in the EnBS, while for snow courses the PBS RMSE was ~79% of the EnBS. Sensitivity tests show relative insensitivity for both the PBS and EnBS results to ensemble size and fSCA measurement error, but a higher sensitivity for the EnBS to the mean prior precipitation input, especially in the case where significant prior biases exist.


2003 ◽  
Vol 7 (5) ◽  
pp. 744-753 ◽  
Author(s):  
T. Skaugen ◽  
S. Beldring ◽  
H.-C. Udnæs

Abstract. A simulation exercise has been performed to study the temporal development of snow covered area and the spatial distribution of snow-water equivalent (SWE). Special consideration has been paid to how the properties of the spatial statistical distribution of SWE change as a response to accumulation and ablation events. A distributed rainfall-runoff model at resolution 1 x 1 km2 has been run with time series of precipitation and temperature fields of the same spatial resolution derived from the atmospheric model HIRLAM. The precipitation fields are disaggregated and the temperature fields are interpolated. Time series of the spatial distribution of snow-water equivalent and snow-covered area for three seasons for a catchment in Norway is generated. The catchment is of size 3085 km2 and two rectangular sub-areas of 484 km2 are located within the larger catchment. The results show that the shape of the spatial distribution of SWE for all three areas changes during winter. The distribution is very skewed at the start of the accumulation season but then the skew decreases and, as the ablation season sets in, the spatial distribution again becomes more skewed with a maximum near the end of the ablation season. For one of the sub-areas, a consistently more skewed distribution of SWE is found, related to higher variability in precipitation. This indicates that observed differences in the spatial distribution of snow between alpine and forested areas can result from differences in the spatial variability of precipitation. The results obtained from the simulation exercise are consistent with modelling the spatial distribution of SWE as summations of a gamma distributed variable. Keywords: Snow, SWE, spatial distribution, simulated hydrometeorological fields


2020 ◽  
Author(s):  
Esteban Alonso-González ◽  
Ethan Gutmann ◽  
Kristoffer Aalstad ◽  
Abbas Fayad ◽  
Simon Gascoin

Abstract. The snowpack over the Mediterranean mountains constitutes a key water resource for the downstream populations. However, its dynamics have not been studied in detail yet in many areas, mostly because of the scarcity of snowpack observations. In this work, we present a characterization of the snowpack over the two mountain ranges of Lebanon. To obtain the necessary snowpack information, we have developed a 1 km regional scale snow reanalysis (ICAR_assim) covering the period 2010–2017. ICAR_assim was developed by means of ensemble-based data assimilation of MODIS fractional snow-covered area (fSCA) through the energy and mass balance model the Flexible Snow Model (FSM2), using the Particle Batch Smoother (PBS). The meteorological forcing data was obtained by a regional atmospheric simulation developed through the Intermediate Complexity Atmospheric Research model (ICAR) nested inside a coarser regional simulation developed by the Weather Research and Forecasting model (WRF). The boundary and initial conditions of WRF were provided by the ERA5 atmospheric reanalysis. ICAR_assim showed very good agreement with MODIS gap-filled snow products, with a spatial correlation of R = 0.98 in the snow probability (P(snow)), and a temporal correlation of R = 0.88 in the day of peak snow water equivalent (SWE)Similarly, ICAR_assim has shown a correlation with the seasonal mean SWE of R = 0.75 compared with in-situ observations from Automatic Weather Stations (AWS). The results highlight the high temporal variability of the snowpack in the Lebanon ranges, with differences between Mount Lebanon and Anti-Lebanon that cannot be only explained by its hypsography been Anti-Lebanon in the rain shadow of Mount Lebanon. The maximum fresh water stored in the snowpack is in the middle elevations approximately between 2200 and 2500 m. a.s.l. Thus, the resilience to further warming is low for the snow water resources of Lebanon due to the proximity of the snowpack to the zero isotherm.


2003 ◽  
Vol 34 (4) ◽  
pp. 281-294 ◽  
Author(s):  
R.V. Engeset ◽  
H-C. Udnæs ◽  
T. Guneriussen ◽  
H. Koren ◽  
E. Malnes ◽  
...  

Snowmelt can be a significant contributor to major floods, and hence updated snow information is very important to flood forecasting services. This study assesses whether operational runoff simulations could be improved by applying satellite-derived snow covered area (SCA) from both optical and radar sensors. Currently the HBV model is used for runoff forecasting in Norway, and satellite-observed SCA is used qualitatively but not directly in the model. Three catchments in southern Norway are studied using data from 1995 to 2002. The results show that satellite-observed SCA can be used to detect when the models do not simulate the snow reservoir correctly. Detecting errors early in the snowmelt season will help the forecasting services to update and correct the models before possible damaging floods. The method requires model calibration against SCA as well as runoff. Time-series from the satellite sensors NOAA AVHRR and ERS SAR are used. Of these, AVHRR shows good correlation with the simulated SCA, and SAR less so. Comparison of simultaneous data from AVHRR, SAR and Landsat ETM+ for May 2000 shows good inter-correlation. Of a total satellite-observed area of 1,088 km2, AVHRR observed a SCA of 823 km2 and SAR 720 km2, as compared to 889 km2 using ETM+.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 890
Author(s):  
Mohamed Wassim Baba ◽  
Abdelghani Boudhar ◽  
Simon Gascoin ◽  
Lahoucine Hanich ◽  
Ahmed Marchane ◽  
...  

Melt water runoff from seasonal snow in the High Atlas range is an essential water resource in Morocco. However, there are only few meteorological stations in the high elevation areas and therefore it is challenging to estimate the distribution of snow water equivalent (SWE) based only on in situ measurements. In this work we assessed the performance of ERA5 and MERRA-2 climate reanalysis to compute the spatial distribution of SWE in the High Atlas. We forced a distributed snowpack evolution model (SnowModel) with downscaled ERA5 and MERRA-2 data at 200 m spatial resolution. The model was run over the period 1981 to 2019 (37 water years). Model outputs were assessed using observations of river discharge, snow height and MODIS snow-covered area. The results show a good performance for both MERRA-2 and ERA5 in terms of reproducing the snowpack state for the majority of water years, with a lower bias using ERA5 forcing.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


2017 ◽  
Vol 11 (4) ◽  
pp. 1647-1664 ◽  
Author(s):  
Emmy E. Stigter ◽  
Niko Wanders ◽  
Tuomo M. Saloranta ◽  
Joseph M. Shea ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. Snow is an important component of water storage in the Himalayas. Previous snowmelt studies in the Himalayas have predominantly relied on remotely sensed snow cover. However, snow cover data provide no direct information on the actual amount of water stored in a snowpack, i.e., the snow water equivalent (SWE). Therefore, in this study remotely sensed snow cover was combined with in situ observations and a modified version of the seNorge snow model to estimate (climate sensitivity of) SWE and snowmelt runoff in the Langtang catchment in Nepal. Snow cover data from Landsat 8 and the MOD10A2 snow cover product were validated with in situ snow cover observations provided by surface temperature and snow depth measurements resulting in classification accuracies of 85.7 and 83.1 % respectively. Optimal model parameter values were obtained through data assimilation of MOD10A2 snow maps and snow depth measurements using an ensemble Kalman filter (EnKF). Independent validations of simulated snow depth and snow cover with observations show improvement after data assimilation compared to simulations without data assimilation. The approach of modeling snow depth in a Kalman filter framework allows for data-constrained estimation of snow depth rather than snow cover alone, and this has great potential for future studies in complex terrain, especially in the Himalayas. Climate sensitivity tests with the optimized snow model revealed that snowmelt runoff increases in winter and the early melt season (December to May) and decreases during the late melt season (June to September) as a result of the earlier onset of snowmelt due to increasing temperature. At high elevation a decrease in SWE due to higher air temperature is (partly) compensated by an increase in precipitation, which emphasizes the need for accurate predictions on the changes in the spatial distribution of precipitation along with changes in temperature.


1987 ◽  
Vol 9 ◽  
pp. 39-44 ◽  
Author(s):  
A.T.C. Chang ◽  
J.L. Foster ◽  
D.K. Hall

Snow covers about 40 million km2 of the land area of the Northern Hemisphere during the winter season. The accumulation and depletion of snow is dynamically coupled with global hydrological and climatological processes. Snow covered area and snow water equivalent are two essential measurements. Snow cover maps are produced routinely by the National Environmental Satellite Data and Information Service of the National Oceanic and Atmospheric Administration (NOAA/NESDIS) and by the US Air Force Global Weather Center (USAFGWC). The snow covered area reported by these two groups sometimes differs by several million km2, Preliminary analysis is performed to evaluate the accuracy of these products.Microwave radiation penetrating through clouds and snowpacks could provide depth and water equivalent information about snow fields. Based on theoretical calculations, snow covered area and snow water equivalent retrieval algorithms have been developed. Snow cover maps for the Northern Hemisphere have been derived from Nimbus-7 SMMR data for a period of six years (1978–1984). Intercomparisons of SMMR, NOAA/NESDIS and USAFGWC snow maps have been conducted to evaluate and assess the accuracy of SMMR derived snow maps. The total snow covered area derived from SMMR is usually about 10% less than the other two products. This is because passive microwave sensors cannot detect shallow, dry snow which is less than 5 cm in depth. The major geographic regions in which the differences among these three products are the greatest are in central Asia and western China. Future study is required to determine the absolute accuracy of each product.Preliminary snow water equivalent maps have also been produced. Comparisons are made between retrieved snow water equivalent over large area and available snow depth measurements. The results of the comparisons are good for uniform snow covered areas, such as the Canadian high plains and the Russian steppes. Heavily forested and mountainous areas tend to mask out the microwave snow signatures and thus comparisons with measured water equivalent are poorer in those areas.


Sign in / Sign up

Export Citation Format

Share Document