scholarly journals Controls of outbursts of moraine-dammed lakes in the greater Himalayan region

2020 ◽  
Author(s):  
Melanie Fischer ◽  
Oliver Korup ◽  
Georg Veh ◽  
Ariane Walz

Abstract. Glacial lakes in the Hindu-Kush Karakoram Himalaya Nyainqentanglha (HKKHN) have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating hazard from glacial lakes has largely relied on qualitative assessments and expert judgment, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use a comprehensive inventory of 3,390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We use these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades, largely regardless of elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer some improvement with respect to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.

2021 ◽  
Vol 15 (8) ◽  
pp. 4145-4163
Author(s):  
Melanie Fischer ◽  
Oliver Korup ◽  
Georg Veh ◽  
Ariane Walz

Abstract. Glacial lakes in the Hindu Kush–Karakoram–Himalayas–Nyainqentanglha (HKKHN) region have grown rapidly in number and area in past decades, and some dozens have drained in catastrophic glacial lake outburst floods (GLOFs). Estimating regional susceptibility of glacial lakes has largely relied on qualitative assessments by experts, thus motivating a more systematic and quantitative appraisal. Before the backdrop of current climate-change projections and the potential of elevation-dependent warming, an objective and regionally consistent assessment is urgently needed. We use an inventory of 3390 moraine-dammed lakes and their documented outburst history in the past four decades to test whether elevation, lake area and its rate of change, glacier-mass balance, and monsoonality are useful inputs to a probabilistic classification model. We implement these candidate predictors in four Bayesian multi-level logistic regression models to estimate the posterior susceptibility to GLOFs. We find that mostly larger lakes have been more prone to GLOFs in the past four decades regardless of the elevation band in which they occurred. We also find that including the regional average glacier-mass balance improves the model classification. In contrast, changes in lake area and monsoonality play ambiguous roles. Our study provides first quantitative evidence that GLOF susceptibility in the HKKHN scales with lake area, though less so with its dynamics. Our probabilistic prognoses offer improvement compared to a random classification based on average GLOF frequency. Yet they also reveal some major uncertainties that have remained largely unquantified previously and that challenge the applicability of single models. Ensembles of multiple models could be a viable alternative for more accurately classifying the susceptibility of moraine-dammed lakes to GLOFs.


2021 ◽  
Vol 13 (19) ◽  
pp. 3903
Author(s):  
Yingzheng Wang ◽  
Jia Li ◽  
Lixin Wu ◽  
Lei Guo ◽  
Jun Hu ◽  
...  

The continuous melting of valley glaciers can impact the water levels of glacial lakes and create glacial lake outburst floods (GLOFs). The Xixabangma massif is one of the most populated areas in the Himalayas and has suffered from multiple GLOFs. To estimate the glacier melting rate in the past four decades and analyze the outburst risk of glacial lakes in the Xixabangma massif, we determined changes in glacier mass balance, glacier area and glacial lake area based on KH-9 images, TanDEM-X images, Landsat images, SRTM DEM and ICESat-2 elevations. Our results show that, from 1974 to 2018, the total glacier area shrank from 954.01 km2 to 752.46 km2, whereas the total glacial lake area grew from 20.90 km2 to 38.71 km2. From 1974 to 2000, 2000 to 2013 and 2013 to 2018, the region-wide glacier mass balance values were −0.16 m w.e./a, −0.31 m w.e./a and −0.29 m w.e./a, respectively. Three glacial lakes, named Gangxico, Galongco and Jialongco, respectively, expanded by 127.14%, 373.45% and 436.36% from 1974 to 2018, and the mass loss rates of their parent glaciers from 2000 to 2013 increased by 81.72%, 122.22% and 160.00% relative to those during 1974 to 2000. The dams of these three lakes are unstable, and their drainage valleys directly connect to a major town and its infrastructure. Due to current high-water levels, possible external events such as ice collapse, landslide, heavy rainfall and earthquakes can easily trigger GLOFs. Hence, we deemed that the Gangxico, Galongco and Jialongco glacial lakes are dangerous and require special attention.


2016 ◽  
Vol 57 (71) ◽  
pp. 289-294 ◽  
Author(s):  
Phuntsho Tshering ◽  
Koji Fujita

AbstractThis study presents the first decadal mass-balance record of a small debris-free glacier in the Bhutan Himalaya, where few in situ measurements have been reported to date. Since 2003 we have measured the mass balance of Gangju La glacier, which covers an area of 0.3km2 and extends from 4900 to 5200ma.s.l., using both differential GPS surveys (geodetic method) and stake measurements (direct method). The observed mass balance ranged from –1.12 to –2.04mw.e. a–1 between 2003 and 2014. The glacier exhibited much greater mass loss than neighbouring glaciers in the eastern Himalaya and southeastern Tibet, which are expected to be sensitive to climate change due to the monsooninfluenced humid climate. Observed mass-balance profiles suggest that the equilibrium-line altitude has been higher than Gangju La glacier since 2003, implying that the entire glacier has experienced net ablation for at least the past decade.


2021 ◽  
Author(s):  
Johannes Marian Landmann ◽  
Matthias Huss ◽  
Hans Rudolf Künsch ◽  
Christophe Ogier ◽  
Lea Geibel ◽  
...  

<p>As glaciers shrink, high interest in their near real-time mass balance arises. This is mainly for two reasons: first, there are concerns about water availability and short-term water resource planning, and second, glaciers are one of the most prominent indicators of climate change, resulting in a high interest of the broader public.</p><p>To satisfy both interests regarding information on near real-time mass balance, we are running the project CRAMPON – “Cryospheric Monitoring and Prediction Online”. Within this project, we set up an operational assimilation platform where it is possible to query daily mass balance estimates in near real-time, i.e. updated with a lag of max. 24 hours. During the operational alpha phase, we increase the amount of modelled glaciers and assimilated observations steadily. We start with about 15 glaciers from the Glacier Monitoring Switzerland (GLAMOS) program, for which time series of seasonal mass balances from the glaciological method are available. After that, we expand our set of modelled glaciers to about 50 glaciers that have frequent geodetic mass balances in the past, and finally to all glaciers in Switzerland. The assimilated observations reach from the operational GLAMOS seasonal mass balance observations via daily point mass balances from nine in situ cameras providing instantaneous ablation rates to satellite-derived albedo and snow distribution on the glacier.<br>As basis for the platform, we run an ensemble of three temperature index and one simplified energy balance melt models. This ensemble takes gridded temperature, precipitation and radiation as input and aims at quantifying uncertainties of the produced daily mass balances. To determine uncertainties in the model prediction of a current mass budget year correctly, we run the models with parameter distributions we have fitted on individual parameter sets calibrated in the past. Since a purely model-based prediction can reveal high uncertainties though, we choose a sequential data assimilation approach in the form of a Particle Filter to constrain this uncertainty with observations, whenever available. We have customized the standard Particle Filter to (1) use a resampling method that is able to keep models in the ensemble despite a temporary bad performance, and (2) allow parameter and model probability evolution over time.</p><p>In this contribution, we focus on giving a holistic overview over the already existing platform features and discuss the future developments. We plan to make the calculated mass balances publicly available in summer 2021, and to extend this platform to the global scale at a later stage.</p>


2014 ◽  
Vol 55 (66) ◽  
pp. 239-247 ◽  
Author(s):  
Hongbo Wu ◽  
Ninglian Wang ◽  
Xi Jiang ◽  
Zhongming Guo

AbstractWater level fluctuations of inland lakes are related to regional-scale climate changes, and reflect variations in evaporation, precipitation and glacier meltwater flowing into the lake area in its catchment. In this paper, Ice, Cloud and land Elevation Satellite (ICESat) altimeter data and Landsat imagery (2002-09) are used to estimate Nam Co lake (Nyainqentanglha range, Tibetan Plateau) water elevation changes during 2002-09. In 2003 Nam Co lake covered an area of ~1998.8 ± 4.2 km2 and was situated at 4723 m a.s.l. Over such inland water bodies, ICESat altimeter data offer both wide coverage and spatial and temporal accuracy. We combine remote-sensing and GIS technology to map and reconstruct lake area and increased volume changes during a 7 year time series. Nam Co lake water level increased by 2.4±0.12m (0.33ma–1) between 23 February 2003 and 1 October 2009, and lake volume increased by 4.9 ±0.5 km3. In the past 7 years, Nam Co lake area has increased from 1998.78 ±5.4 to 2023.8 ±3.4 km2, the glacier-covered area has decreased from 832.34 to 821.0 km2 and the drainage basin area has decreased from 201.1 ±4.2 to 196.1 ±2.3 km2. However, the most spectacular feature is the continual water level rise from 2003 to 2009 without an obvious associated increase in precipitation. Based on digital elevation models (DEMs) from Shuttle Radar Topography Mission (SRTM) DEM data and corrected ICESat elevation data, significant changes to glacier mass balance in the western Nyainqentanglha mountains are indicated. Nyainqentanglha mountain glacier surface elevations decreased by 8.39 ± 0.45 m during 2003-09. Over the same period, at least 1.01 km3 of glacial meltwater flowed into Nam Co lake, assuming a glacial runoff coefficient of 0.6. The mean glacier mass-balance value is -490mmw.e. over the corresponding period, indicating that glacier meltwater in the catchment contributes to lake level rise. The contribution rate of glacial meltwater to lake water volume rise is 20.75%. The temporal lake level fluctuation correlates with temperature variations over the same time span.


2019 ◽  
Vol 31 (2) ◽  
pp. 410-418 ◽  
Author(s):  
Jizu Chen ◽  
Xiang Qin ◽  
Shichang Kang ◽  
Wentao Du ◽  
Weijun Sun ◽  
...  

1997 ◽  
Vol 43 (143) ◽  
pp. 131-137 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon

AbstractGlacial mass-balance reconstruction for a long-term time-scale requires knowledge of the relation between climate change and mass-balance fluctuations. A large number of mass-balance reconstructions since the beginning of the century are based on statistical relations between monthly meteorological data and mass balance. The question examined in this paper is: are these relationships reliable enough for long-term time-scale extrapolation? From the glacier de Sarennes long mass-balance observations series, we were surprised to discover large discrepancies between relations resulting from different time periods. The importance of the albedo in relation to ablation and mass balance is highlighted, and it is shown that it is impossible to ignore glacier-surface conditions in establishing the empirical relation between mass-balance fluctuations and climatic variation; to omit this parameter leads to incorrect results for mass-balance reconstruction in the past based on meteorological data.


1997 ◽  
Vol 24 ◽  
pp. 283-287 ◽  
Author(s):  
Vladimir N. Mikhalenko

Glaciers of both the Arctic and mid-latitude mountain systems within Eurasia have retreated intensively during the past century. Measured and reconstructed glacier mass balances show that glacier retreat began around the 1880s. The mean annual mass-balance value for 1880–1990 was −480 mm a−1 for glaciers with maritime climatic conditions, and −140 mm a−1 for continental glaciers. It can be concluded that warming in the Caucasus occurred during at least the last 60 years, according to the distribution of crystal sizes in an ice core from the Dzhantugan firn plateau. Temperatures measured in 1962 at 20 m on the Gregoriev ice cap, Tien Shan, were −4.2°C while in 1990 they were −2°C, a warming of 2.2°C over 28 years. Changes in the isotopic composition of glacier ice during the 20th century indicate recent and continuing warming in different regions of Eurasia. The δ18O records reveal an enrichment at the Gregoriev ice cap during the last 50 years, while surface temperatures at the Tien Shan meteorological station have increased 0.5°C since 1930.


2020 ◽  
Author(s):  
Melanie Fischer ◽  
Georg Veh ◽  
Oliver Korup ◽  
Ariane Walz

<p>Despite being a rather rare phenomenon when compared to the occurrence rates of other alpine hazards (e.g. landslides, avalanches), glacial lake outburst floods (GLOFs) pose a significant threat to downvalley communities in glaciated mountain areas. Characteristically high peak discharge rates and flood volumes, documented to have reached 30,000 m³/s and > 50 million m³ in the past century, not only provide GLOFs with a landscape-forming potential but also killed a reported global total of > 12,000 people and caused severe damage to infrastructures. Extensive glacial covers and steep topographic gradients, coupled with rapidly changing socio-economical implications, make the Hindu-Kush-Himalaya (HKH) a high priority region for GLOF research, even though recent studies suggest an annual occurrence rate of 1.3 GLOFs per year across this range during the past three decades. So far, GLOF research in the greater HKH region has been predominantly focused on the classification of potentially dangerous glacial lakes derived from analysing a limited number of glacial lakes and even fewer reportedly GLOF-generating glacial lakes. Moreover, subjectively set thresholds are commonly used to produce GLOF hazard classification matrices. Contrastingly, our study is aimed at an unbiased, statistical robust and reproducible assessment of GLOF susceptibility. It is based on the currently most complete inventory of GLOFs in the HKH since the 1980’s, which comprises 38 events. In order to identify key predictors for GLOF susceptibility, a total of 104 potential predictors are tested in logistic regression models. These parameters cover four predictor categories, which describe each glacial lake’s a) topography, b) catchment glaciers, c) geology and seismicity in its surroundings, and c) local climatic variables. Both classical binary logistic regression as well as hierarchical logistic regression approaches are implemented in order to assess which factors drive susceptibility of HKH glacial lakes to sudden outbursts and whether these are regionally distinct.</p>


1997 ◽  
Vol 43 (143) ◽  
pp. 131-137 ◽  
Author(s):  
C. Vincent ◽  
M. Vallon

AbstractGlacial mass-balance reconstruction for a long-term time-scale requires knowledge of the relation between climate change and mass-balance fluctuations. A large number of mass-balance reconstructions since the beginning of the century are based on statistical relations between monthly meteorological data and mass balance. The question examined in this paper is: are these relationships reliable enough for long-term time-scale extrapolation? From the glacier de Sarennes long mass-balance observations series, we were surprised to discover large discrepancies between relations resulting from different time periods. The importance of the albedo in relation to ablation and mass balance is highlighted, and it is shown that it is impossible to ignore glacier-surface conditions in establishing the empirical relation between mass-balance fluctuations and climatic variation; to omit this parameter leads to incorrect results for mass-balance reconstruction in the past based on meteorological data.


Sign in / Sign up

Export Citation Format

Share Document