scholarly journals A generalized photon-tracking approach to simulate spectral snow albedo and transmissivity using X-ray microtomography and geometric optics

2021 ◽  
Author(s):  
Theodore Letcher ◽  
Julie Parno ◽  
Zoe Courville ◽  
Lauren Farnsworth ◽  
Jason Olivier

Abstract. A majority of snow radiative transfer models (RTM) treat snow as a collection of idealized grains rather than a semi-organized ice-air matrix. Here we present a generalized multi-layer photon-tracking RTM that simulates light transmissivity and reflectivity through snow based on x-ray microtomography, treating snow as a coherent structure rather than a collection of grains. Notably, the model uses a blended approach to expand ray-tracing techniques applied to sub-1 cm3 snow samples to snowpacks of arbitrary depths. While this framework has many potential applications, this study's effort is focused on simulating light transmissivity through thin snowpacks as this is relevant for surface energy balance applications and sub-nivean hazard detection. We demonstrate that this framework capably reproduces many known optical properties of a snow surface, including the dependence of spectral reflectance on snow grain size and incident zenith angle and the surface bidirectional reflectance distribution function (BRDF). To evaluate how the model simulates transmissivity, we compare it against spectroradiometer measurements collected at a field site in east-central Vermont. In this experiment, painted panels were inserted at various depths beneath the snow to emulate thin snow. The model compares remarkably well against the spectroradiometer measurements. Sensitivity simulations using this model indicate that snow transmissivity is greatest in the visible wavelengths and is limited to the top 5 cm of the snowpack for fine-grained snow, but can penetrate as deep as 8 cm for coarser grain snow. An evaluation of snow optical properties generated from a variety of snow samples suggests that coarse grained low density snow is most transmissive.

Author(s):  
Yumeng Liang ◽  
Anfu Zhou ◽  
Huanhuan Zhang ◽  
Xinzhe Wen ◽  
Huadong Ma

Contact-less liquid identification via wireless sensing has diverse potential applications in our daily life, such as identifying alcohol content in liquids, distinguishing spoiled and fresh milk, and even detecting water contamination. Recent works have verified the feasibility of utilizing mmWave radar to perform coarse-grained material identification, e.g., discriminating liquid and carpet. However, they do not fully exploit the sensing limits of mmWave in terms of fine-grained material classification. In this paper, we propose FG-LiquID, an accurate and robust system for fine-grained liquid identification. To achieve the desired fine granularity, FG-LiquID first focuses on the small but informative region of the mmWave spectrum, so as to extract the most discriminative features of liquids. Then we design a novel neural network, which uncovers and leverages the hidden signal patterns across multiple antennas on mmWave sensors. In this way, FG-LiquID learns to calibrate signals and finally eliminate the adverse effect of location interference caused by minor displacement/rotation of the liquid container, which ensures robust identification towards daily usage scenarios. Extensive experimental results using a custom-build prototype demonstrate that FG-LiquID can accurately distinguish 30 different liquids with an average accuracy of 97%, under 5 different scenarios. More importantly, it can discriminate quite similar liquids, such as liquors with the difference of only 1% alcohol concentration by volume.


2014 ◽  
Vol 936 ◽  
pp. 618-623
Author(s):  
Lung Chien Chen ◽  
Xiu Yu Zhang ◽  
Kuan Lin Lee

Cu-doped ZnO (CZO) films have been widely discussed due to its potential applications in semiconductor devices, such as gas sensors or solar cells, but few articles were reported to show the effect on properties of CZO films by using different Cu sources. The article demonstrates that CZO films have been prepared by using different Cu source via a simple ultrasonic spray method, in which copper nitrate and copper acetate were used as copper sources. Optical properties of CZO films prepared by copper nitrate and copper acetate were investigated by transmittance and photoluminescence measurement. The X-ray diffraction analysis and field emission scanning electron microscopy were used to investigate the composition and the morphology of the films. The CZO films prepared by using copper acetate shows better optical properties by comprehensive analysis.


2011 ◽  
Vol 117-119 ◽  
pp. 990-994
Author(s):  
Wei Wei ◽  
Zhi Wu Wang ◽  
Mao Lin Liu

Exposed to 650°C air, TP304H stainless steel with two different grain size was oxidized at this temperature. At the meantime, comparison of their oxidation was through the oxidation kinetics curves and analysis of the morphology and composition of oxide scale which conducted by SEM and X-ray. The results showed that the oxidation rate of TP304H stainless steel was slowed down by grain refinement and oxide scale of fine-grained TP304H steel was thinner than that of coarse-grained steel. The nucleation and the growth of nuclei of coarse-grained oxide scale were more rapid. In addition, the grain refinement of austenitic stainless steel accelerated the diffusivity of Cr and made for the formation of dense and continuous oxide scale, so that the oxidation of stainless steel can be effectively inhabited.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 830 ◽  
Author(s):  
Joachim Gussone ◽  
Galina Kasperovich ◽  
Jan Haubrich ◽  
Guillermo Requena

Brazing of titanium provides a joining technique suitable for the fabrication of highly-loaded aerospace components, but it still poses numerous challenges, such as the formation of brittle intermetallic interphases. This study of the interphase formation in brazed joints consisting of different titanium alloys (Ti-CP2, Ti-CP4, Ti-6Al-4V, Ti-6Al-2Mo-4Zr-2Sn) and Ag28Cu shows that complex reactions lead to the formation of various intermetallic phases including a Ti2Cu-TiCu boundary zone. The compositions of the titanium alloys influenced the particular microstructures, which have been characterized with various methods including synchrotron X-ray microtomography. Tensile tests evidence high ultimate tensile strengths that are, importantly, not directly limited by the strength of the brazing alloy. The strength of the Ti2Cu-TiCu phase boundary is significantly increased by the alloying elements in Ti-6Al-4V and Ti-6Al-2Mo-4Zr-2Sn and the crack paths change from boundary failure to transcrystalline fracture through TiCu as well as Ag-rich regions. Cu diffusion into the titanium substrate, leading to a coarse grained β-phase that transforms eutectoidally into a lamellar α-Ti + Ti2Cu structure during cooling, occurred in all systems except Ti-6Al-2Mo-4Zr-2Sn where Mo stabilized a fine grained microstructure and enabled the formation of a columnar TiCu structure.


Author(s):  
G. W. Brindley

Micaceous minerals, such as the micas, the chlorites, and most clay minerals, usually develop as thin lamellae parallel to the crystallographic basal plane (001). In sedimentary deposits these lamellae tend to lie parallel to the bedding plane and in slates parallel to the cleavage. Their degree of orientation is likely to vary with the conditions of formation of the material, and in the case of slates Bates (1947) has shown that it is closely related to their fissility. In relatively coarse-grained materials the degree of orientation may be studied directly by suitable microscopic techniques, but with fine-grained materials X-ray methods must be used, and even with coarser-grained materials the use of X-ray methods may have advantages, especially if a scanning technique, such as that described by Thewlis and Pollock (1950), is employed.


2015 ◽  
Vol 48 (3) ◽  
pp. 882-889 ◽  
Author(s):  
Jette Oddershede ◽  
Marta Majkut ◽  
Qinghua Cao ◽  
Søren Schmidt ◽  
Jonathan P. Wright ◽  
...  

A method for the extension of the three-dimensional X-ray diffraction technique to allow the extraction of domain volume fractions in polycrystalline ferroic materials is presented. This method gives access to quantitative domain volume fractions of hundreds of independent embedded grains within a bulk sample. Such information is critical to furthering our understanding of the grain-scale interactions of ferroic domains and their influence on bulk properties. The method also provides a validation tool for mesoscopic ferroic domain modelling efforts. The mathematical formulations presented here are applied to tetragonal coarse-grained Ba0.88Ca0.12Zr0.06Ti0.94O3and rhombohedral fine-grained (0.82)Bi0.5Na0.5TiO3–(0.18)Bi0.5K0.5TiO3electroceramic materials. The fitted volume fraction information is used to calculate grain-scale non-180° ferroelectric domain switching strains. The absolute errors are found to be approximately 0.01 and 0.03% for the tetragonal and rhombohedral cases, which had maximum theoretical domain switching strains of 0.47 and 0.54%, respectively. Limitations and possible extensions of the technique are discussed.


2021 ◽  
Vol 29 (1) ◽  
pp. 131-163
Author(s):  
Jiří Sejkora ◽  
Petr Pauliš ◽  
Michal Urban ◽  
Zdeněk Dolníček ◽  
Jana Ulmanová ◽  
...  

An extraordinary rich mineral assemblage (more than 35 determined mineral species) has been discovered in quartz greisen mineralization found at dump material of the abandoned Mauritius mine. This mine is situated about 1 km N of the Hřebečná village, 16 km N of Karlovy Vary, Krušné hory Mountains, Czech Republic. The studied mineralization with its textural and mineralogical character differs significantly from the usual fine-grained greisens mined in this area. The primary mineralization is represented by coarse-grained quartz and fluorapatite with sporadic zircon, monazite-(Ce), xenotime-(Y) and very rare cassiterite. Besides common sulphides (arsenopyrite, chalcopyrite, pyrite, sphalerite, tetrahedrite-group minerals), Bi-sulphosalts (aikinite, bismuthinite, berryite, cuprobismutite, emplectite, wittichenite) were determined. Members of the tetrahedrite group also contain increased amounts of Bi - in addition to Bi-rich tennantite-(Zn) and tennantite-(Fe), microscopic zones represented by the not approved Bi-dominant analogue of tennantite („annivite-(Zn)“) were also found. The primary mineralization was intensively affected by supergene processes. Chalcopyrite and sphalerite are replaced by Cu sulphides - especially anilite and digenite, and more rarely by geerite, spionkopite and covellite. Some of the fluorapatite grains in the vein quartz were decomposed and mrázekite, mixite, libethenite, pseudomalachite, hydroxylpyromorphite, metatorbernite as well as rare dzhalindite crystallized in the resulting cavities. However, the most abundant supergene phases are the minerals of the alunite supergroup - crandallite, goyazite, plumbogummite, svanbergite and waylandite. The detailed descriptions, X-ray powder diffraction data, refined unit-cell parameters and quantitative chemical composition of individual studied mineral phases are presented.


2012 ◽  
Vol 76 (1) ◽  
pp. 45-57 ◽  
Author(s):  
F.C. Hawthorne ◽  
M. A. Cooper ◽  
Y. A. Abdu ◽  
N. A. Ball ◽  
M. E. Back ◽  
...  

AbstractDavidlloydite, ideally Zn3(AsO4)2(H2O)4, is a new supergene mineral from the Tsumeb mine, Otjikoto (Oshikoto) region, Namibia. It occurs as elongated prisms (∼10:1 length-to-width ratio) that are flattened on {010}, and up to 100 × 20 × 10 μm in size. The crystals occur as aggregates (up to 500 μm across) of subparallel to slightly diverging prisms lying partly on and partly embedded in fine-grained calcioandyrobertsite. Crystals are prismatic along [001] and flattened on {010}, and show the forms {010} dominant and {100} subsidiary. Davidlloydite is colourless with a white streak and a vitreous lustre; it does not fluoresce under ultraviolet light. The cleavage is distinct on {010}, and no parting or twinning was observed. The Mohs hardness is 3 – 4. Davidlloydite is brittle with an irregular to hackly fracture. The calculated density is 3.661 g cm–3. Optical properties were measured with a Bloss spindle stage for the wavelength 590 nm using a gel filter. The indices of refraction are α = 1.671, β = 1.687, γ = 1.695, all ±0.002; the calculated birefringence is 0.024; 2Vobs = 65.4(6)°, 2Vcalc = 70°; the dispersion is r < v, weak; pleochroism was not observed. Davidlloydite is triclinic, space group P1, with a = 5.9756(4), b = 7.6002(5), c = 5.4471(4) Å, α = 84.2892(9), β = 90.4920(9), γ = 87.9958(9)°, V = 245.99(5) Å3, Z = 1 and a:b:c = 0.7861:1:0.7167. The seven strongest lines in the X-ray powder diffraction pattern [listed as d (Å), I, (hkl)] are as follows: 4.620, 100, (011, 10); 7.526, 71, (010); 2.974, 49, (200, 01); 3.253, 40, (021, 120); 2.701, 39, (10, 002, 1); 5.409, 37, (001); 2.810, 37, (210). Chemical analysis by electron microprobe gave As2O5 43.03, ZnO 37.95, CuO 5.65, H2O(calc) 13.27, sum 99.90 wt.%. The H2O content and the valence state of As were determined by crystal structure analysis. On the basis of 12 anions with H2O = 4 a.p.f.u., the empirical formula is (Zn2.53Cu0.39)Σ2.92As2.03O8(H2O)4.The crystal structure of davidlloydite was solved by direct methods and refined to an R1 index of 1.51% based on 1422 unique observed reflections collected on a three-circle rotating-anode (MoKα radiation) diffractometer equipped with multilayer optics and an APEX-II detector. In the structure of davidlloydite, sheets of corner-sharing (As5+O4) and (ZnO4) tetrahedra are linked by ZnO2(H2O)4 octahedra. The structure is related to that of parahopeite.


2020 ◽  
Vol 27 (1) ◽  
pp. 44-50
Author(s):  
Ivan Lyatun ◽  
Peter Ershov ◽  
Irina Snigireva ◽  
Anatoly Snigirev

Beryllium is one of the most transparent materials to hard X-ray radiation and, as a direct consequence, it is the main material for the fabrication of X-ray refractive optics and instrumentation for synchrotron radiation sources and free-electron laser facilities. However, it is known that almost all beryllium currently in use is polycrystalline material. In this paper, the influence of the microstructure of different beryllium grades on the optical properties of X-ray refractive lenses is studied. The experiments were performed at the ESRF ID06 beamline in X-ray coherent transmission microscopy mode in the near- and far-fields. Two sets of refractive lenses made of beryllium O-30-H and IS-50M grades with different internal microstructure were used. It was found that both beryllium grades have a strongly inhomogeneous structure, which inevitably produces speckle patterns under coherent illumination in imaging experiments. It was shown that fine-grained beryllium O-30-H is better suited for imaging applications, whereas beryllium IS-50M with a relatively large grain microstructure is more appropriate for focusing and collimation of X-rays. A discussion on the requirements for X-ray optical materials used at the third- and fourth-generation synchrotrons is also presented.


Minerals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 912
Author(s):  
Gabriel K. Nzulu ◽  
Babak Bakhit ◽  
Hans Högberg ◽  
Lars Hultman ◽  
Martin Magnuson

X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) are applied to investigate the properties of fine-grained concentrates on artisanal, small-scale gold mining samples from the Kubi Gold Project of the Asante Gold Corporation near Dunwka-on-Offin in the Central Region of Ghana. Both techniques show that the Au-containing residual sediments are dominated by the host elements Fe, Ag, Al, N, O, Si, Hg, and Ti that either form alloys with gold or with inherent elements in the sediments. For comparison, a bulk nugget sample mainly consisting of Au forms an electrum, i.e., a solid solution with Ag. Untreated (impure) sediments, fine-grained Au concentrate, coarse-grained Au concentrate, and processed ore (Au bulk/nugget) samples were found to contain clusters of O, C, N, and Ag, with Au concentrations significantly lower than that of the related elements. This finding can be attributed to primary geochemical dispersion, which evolved from the crystallization of magma and hydrothermal liquids as well as the migration of metasomatic elements and the rapid rate of chemical weathering of lateralization in secondary processes. The results indicate that Si and Ag are strongly concomitant with Au because of their eutectic characteristics, while N, C, and O follow alongside because of their affinity to Si. These non-noble elements thus act as pathfinders for Au ores in the exploration area. This paper further discusses relationships between gold and sediments of auriferous lodes as key to determining indicator minerals of gold in mining sites.


Sign in / Sign up

Export Citation Format

Share Document