scholarly journals Verification of forecasted winter precipitation in complex terrain

2014 ◽  
Vol 8 (6) ◽  
pp. 5727-5762 ◽  
Author(s):  
M. Schirmer ◽  
B. Jamieson

Abstract. Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the winter season, although avalanche forecasters and other decision makers frequently rely on NWP models. We verified two NWP models (GEM-LAM and GEM15) and a precipitation analysis system (CaPA) at approximately 100 stations in the mountains of western Canadian and northwestern US. Ultrasonic snow depth sensors and snow pillows were used to observe daily precipitation amounts. For the first time, a detailed objective validation scheme was performed highlighting many aspects of forecast quality. Overall, the models underestimated precipitation amounts, although low precipitation categories were overestimated. The finer resolution model GEM-LAM performed best in all analysed aspects of model performance, while the precipitation analysis system performed worst. An analysis of the economic value of large precipitation categories showed that only mitigation measures with low cost/loss ratios (i.e. measures that can be performed often) will benefit from these NWP models. This means that measures with large associated costs (relative to anticipated losses when the measure is not performed) should not or not primarily depend on forecasted precipitation.

2015 ◽  
Vol 9 (2) ◽  
pp. 587-601 ◽  
Author(s):  
M. Schirmer ◽  
B. Jamieson

Abstract. Numerical Weather Prediction (NWP) models are rarely verified for mountainous regions during the winter season, although avalanche forecasters and other decision makers frequently rely on NWP models. Winter precipitation from two NWP models (GEM-LAM and GEM15) and from a precipitation analysis system (CaPA) was verified at approximately 100 stations in the mountains of western Canada and the north-western US. Ultrasonic snow depth sensors and snow pillows were used to observe daily precipitation amounts. For the first time, a detailed objective validation scheme was performed highlighting many aspects of forecast quality. Overall, the models underestimated precipitation amounts, although low precipitation categories were overestimated. The finer resolution model GEM-LAM performed best in all analysed aspects of model performance, while the precipitation analysis system performed worst. An analysis of the economic value of large precipitation categories showed that only mitigation measures with low cost–loss ratios (i.e. measures that can be performed often) will benefit from these NWP models. This means that measures with large associated costs relative to anticipated losses when the measure is not performed should not or not primarily depend on forecasted precipitation.


2021 ◽  
Author(s):  
Witold Rohm ◽  
Paweł Hordyniec ◽  
Gregor Möller ◽  
Maciej Kryza ◽  
Estera Trzcina ◽  
...  

<p>Global Navigation Satellite Systems (GNSS) sense the atmosphere remotely and provide low-cost, high-quality information about its state. Nowadays, radio occultation (RO) profiles from space platforms and tropospheric delays from ground-based stations are routinely assimilated in Numerical Weather Models  (NWM).</p><p>In spite of provision of valuable information for weather forecasting, both space- and ground-based data have significant limitations. The RO technique has low horizontal resolution and does not provide reliable profiles in the first 3-5km of the troposphere. Whereas, the station-specific integrated value of troposphere are sparse and pose a problem to NWM adjoint operator for correcting model fields at different heights. These deficiencies could be resolved by the GNSS tomography technique that utilizes an inverse Radon transform to derive the 3D refractivity distribution over certain troposphere space. The combination of space-based and ground-based observations in the tomographic model will enable us to increase the number of intersections of GNSS signals and improve the refractivity solution within individual model locations. </p><p>The aim of this research is to harness the full potential of Space 4.0 era, rapidly growing numbers of RO and GNSS satellite constellations as well as low-cost GNSS ground-based networks worldwide. We will not only use current infrastructure but also examine impact of future constellations on model performance. 3D model of refractivity from dense observations should be an excellent tool in weather prediction. Our previous research proves that the assimilation of the GNSS tomography outputs into the NWM improves relative humidity and the short-term weather forecasts. Therefore, the research goal of this project is to assess the benefit of integrated tomography model on the severe weather prediction and urban scale weather models.</p>


2017 ◽  
Vol 21 (5) ◽  
pp. 2531-2544 ◽  
Author(s):  
Vianney Courdent ◽  
Morten Grum ◽  
Thomas Munk-Nielsen ◽  
Peter S. Mikkelsen

Abstract. Precipitation is the cause of major perturbation to the flow in urban drainage and wastewater systems. Flow forecasts, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimize the operation of integrated urban drainage–wastewater systems (IUDWSs) during both wet and dry weather periods. Numerical weather prediction (NWP) models have significantly improved in recent years, having increased their spatial and temporal resolution. Finer resolution NWP are suitable for urban-catchment-scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain, and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with ensemble prediction systems (EPSs). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain and therefore errors will be made; decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision-making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The relative economic value (REV) approach associates economic values with the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain–loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecast). The specificity of this study is to optimize the energy consumption in IUDWS during low-flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecast). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial uses.


2016 ◽  
Author(s):  
Vianney Courdent ◽  
Morten Grum ◽  
Thomas Munk-Nielsen ◽  
Peter S. Mikkelsen

Abstract. Precipitation is the major perturbation to the flow in urban drainage and wastewater systems. Flow forecast, generated by coupling rainfall predictions with a hydrologic runoff model, can potentially be used to optimise the operation of Integrated Urban Drainage–Wastewater Systems (IUDWS) during both wet and dry weather periods. Numerical Weather Prediction (NWP) models have significantly improved in recent years; increasing their spatial and temporal resolution. Finer resolution NWP are suitable for urban catchment scale applications, providing longer lead time than radar extrapolation. However, forecasts are inevitably uncertain and fine resolution is especially challenging for NWP. This uncertainty is commonly addressed in meteorology with Ensemble Prediction Systems (EPS). Handling uncertainty is challenging for decision makers and hence tools are necessary to provide insight on ensemble forecast usage and to support the rationality of decisions (i.e. forecasts are uncertain therefore errors will be made, decision makers need tools to justify their choices, demonstrating that these choices are beneficial in the long run). This study presents an economic framework to support the decision making process by providing information on when acting on the forecast is beneficial and how to handle the EPS. The Relative Economic Value (REV) approach associates economic values to the potential outcomes and determines the preferential use of the EPS forecast. The envelope curve of the REV diagram combines the results from each probability forecast to provide the highest relative economic value for a given gain-loss ratio. This approach is traditionally used at larger scales to assess mitigation measures for adverse events (i.e. the actions are taken when events are forecasted). The specificity of this study is to optimise the energy consumption in IUDWS during low flow periods by exploiting the electrical smart grid market (i.e. the actions are taken when no events are forecasted). Furthermore, the results demonstrate the benefit of NWP neighbourhood post-processing methods to enhance the forecast skill and increase the range of beneficial use.


Atmosphere ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 91
Author(s):  
Santiago Lopez-Restrepo ◽  
Andres Yarce ◽  
Nicolás Pinel ◽  
O.L. Quintero ◽  
Arjo Segers ◽  
...  

The use of low air quality networks has been increasing in recent years to study urban pollution dynamics. Here we show the evaluation of the operational Aburrá Valley’s low-cost network against the official monitoring network. The results show that the PM2.5 low-cost measurements are very close to those observed by the official network. Additionally, the low-cost allows a higher spatial representation of the concentrations across the valley. We integrate low-cost observations with the chemical transport model Long Term Ozone Simulation-European Operational Smog (LOTOS-EUROS) using data assimilation. Two different configurations of the low-cost network were assimilated: using the whole low-cost network (255 sensors), and a high-quality selection using just the sensors with a correlation factor greater than 0.8 with respect to the official network (115 sensors). The official stations were also assimilated to compare the more dense low-cost network’s impact on the model performance. Both simulations assimilating the low-cost model outperform the model without assimilation and assimilating the official network. The capability to issue warnings for pollution events is also improved by assimilating the low-cost network with respect to the other simulations. Finally, the simulation using the high-quality configuration has lower error values than using the complete low-cost network, showing that it is essential to consider the quality and location and not just the total number of sensors. Our results suggest that with the current advance in low-cost sensors, it is possible to improve model performance with low-cost network data assimilation.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 517
Author(s):  
Seong-heum Kim ◽  
Youngbae Hwang

Owing to recent advancements in deep learning methods and relevant databases, it is becoming increasingly easier to recognize 3D objects using only RGB images from single viewpoints. This study investigates the major breakthroughs and current progress in deep learning-based monocular 3D object detection. For relatively low-cost data acquisition systems without depth sensors or cameras at multiple viewpoints, we first consider existing databases with 2D RGB photos and their relevant attributes. Based on this simple sensor modality for practical applications, deep learning-based monocular 3D object detection methods that overcome significant research challenges are categorized and summarized. We present the key concepts and detailed descriptions of representative single-stage and multiple-stage detection solutions. In addition, we discuss the effectiveness of the detection models on their baseline benchmarks. Finally, we explore several directions for future research on monocular 3D object detection.


Sensors ◽  
2019 ◽  
Vol 19 (2) ◽  
pp. 291 ◽  
Author(s):  
Hamdi Sahloul ◽  
Shouhei Shirafuji ◽  
Jun Ota

Local image features are invariant to in-plane rotations and robust to minor viewpoint changes. However, the current detectors and descriptors for local image features fail to accommodate out-of-plane rotations larger than 25°–30°. Invariance to such viewpoint changes is essential for numerous applications, including wide baseline matching, 6D pose estimation, and object reconstruction. In this study, we present a general embedding that wraps a detector/descriptor pair in order to increase viewpoint invariance by exploiting input depth maps. The proposed embedding locates smooth surfaces within the input RGB-D images and projects them into a viewpoint invariant representation, enabling the detection and description of more viewpoint invariant features. Our embedding can be utilized with different combinations of descriptor/detector pairs, according to the desired application. Using synthetic and real-world objects, we evaluated the viewpoint invariance of various detectors and descriptors, for both standalone and embedded approaches. While standalone local image features fail to accommodate average viewpoint changes beyond 33.3°, our proposed embedding boosted the viewpoint invariance to different levels, depending on the scene geometry. Objects with distinct surface discontinuities were on average invariant up to 52.8°, and the overall average for all evaluated datasets was 45.4°. Similarly, out of a total of 140 combinations involving 20 local image features and various objects with distinct surface discontinuities, only a single standalone local image feature exceeded the goal of 60° viewpoint difference in just two combinations, as compared with 19 different local image features succeeding in 73 combinations when wrapped in the proposed embedding. Furthermore, the proposed approach operates robustly in the presence of input depth noise, even that of low-cost commodity depth sensors, and well beyond.


2017 ◽  
Vol 17 (6) ◽  
pp. 881-885 ◽  
Author(s):  
Luigi Guerriero ◽  
Giovanni Guerriero ◽  
Gerardo Grelle ◽  
Francesco M. Guadagno ◽  
Paola Revellino

Abstract. Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.


Sign in / Sign up

Export Citation Format

Share Document