scholarly journals Partitioning of diversity: the "within communities" component

Web Ecology ◽  
2014 ◽  
Vol 14 (1) ◽  
pp. 51-60 ◽  
Author(s):  
H.-R. Gregorius

Abstract. It is routinely understood that the total diversity within a metacommunity (γ-diversity) can be partitioned into one component summarizing the diversity within communities (α-diversity) and a second component representing the contribution of diversity (or differences) between communities (β-diversity). The underlying thought is that merging differentiated communities should raise the total diversity above the average level of diversity within the communities. The crucial point in this partitioning criterion is set by the notion of "diversity within communities" (DWC) and its relation to the total diversity. The common approach to summarizing DWC is in terms of averages. Yet there are many different ways to average diversity, and not all of these averages stay below the total diversity for every measure of diversity, corrupting the partitioning criterion. This raises the question of whether conceptual properties of diversity measures exist, the fulfillment of which implies that all measures of DWC obey the partitioning criterion. It is shown that the straightforward generalization of the plain counting of types (richness) leads to a generic diversity measure that has the desired properties and, together with its effective numbers, fulfills the partitioning criterion for virtually all of the relevant diversity measures in use. It turns out that the classical focus on DWC (α) and its complement (β as derived from α and γ) in the partitioning of total diversity captures only the apportionment perspective of the distribution of trait diversity over communities (which implies monomorphism within communities at the extreme). The other perspective, differentiation, cannot be assessed appropriately unless an additional level of diversity is introduced that accounts for differences between communities (such as the joint "type-community diversity"). Indices of apportionment IA (among which is GST and specially normalized versions of β) and differentiation ID are inferred, and it is demonstrated that conclusions derived from IA depend considerably on the measure of diversity to which it is applied, and that in most cases an assessment of the distribution of diversity over communities requires additional computation of ID.

Paleobiology ◽  
2007 ◽  
Vol 33 (1) ◽  
pp. 116-124 ◽  
Author(s):  
Karen M. Layou

Paleobiological diversity is often expressed as α (within-sample), β (among-sample), and γ (total) diversities. However, when studying the effects of extinction on diversity patterns, only variations in α and γ diversities are typically addressed. A null model that examines changes in β diversity as a function of percent extinction is presented here.The model examines diversity in the context of a hierarchical sampling strategy that allows for the additive partitioning of γ diversity into mean α and β diversities at varying scales. Here, the sampling hierarchy has four levels: samples, beds, facies, and region; thus, there are four levels of α diversity (α1, α2, α3, α4) and three levels of β diversity (β1, β2, and β3). Taxa are randomly assigned to samples within the hierarchy according to probability of occurrence, and initial mean α and β values are calculated. A regional extinction is imposed, and the hierarchy is resampled from the remaining extant taxa. Post-extinction mean α and β values are then calculated.Both non-selective and selective extinctions with respect to taxon abundance yield decreases in α, β, and γ diversities. Non-selective extinction with respect to taxon abundance shows little effect on diversity partitioning except at the highest extinction magnitudes (above 75% extinction), where the contribution of α1 to total γ increases at the expense of β3, with β1 and β2 varying little with increasing extinction magnitude. The pre-extinction contribution of α1 to total diversity increases with increased probabilities of taxon occurrence and the number of shared taxa between facies. Both β1 and β2 contribute equally to total diversity at low occurrence probabilities, but β2 is negligible at high probabilities, because individual samples preserve all the taxonomic variation present within a facies. Selective extinction with respect to rare taxa indicates a constant increase in α1 and constant decrease in β3 with increasing extinction magnitudes, whereas selective extinction with respect to abundant taxa yields the opposite pattern of an initial decrease in α1 and increase in β3. Both β1 and β2 remain constant with increasing extinction for both cases of selectivity. By comparing diversity partitioning before and after an extinction event, it may be possible to determine whether the extinction was selective with respect to taxon abundances, and if so, whether that selectivity was against rare or abundant taxa.Field data were collected across a Late Ordovician regional extinction in the Nashville Dome of Tennessee, with sampling hierarchy similar to that of the model. These data agree with the abundant-selective model, showing declines in α, β, and γ diversities, and a decrease in α1 and increase in β3, which suggests this extinction may have targeted abundant taxa.


2021 ◽  
Vol 11 (4) ◽  
pp. 1615
Author(s):  
Stefanie Nicoline Vink ◽  
Francisco Dini-Andreote ◽  
Rebecca Höfle ◽  
Anna Kicherer ◽  
Joana Falcão Salles

Diversity and community structure of soil microorganisms are increasingly recognized as important contributors to sustainable agriculture and plant health. In viticulture, grapevine scion cultivars are grafted onto rootstocks to reduce the incidence of the grapevine pest phylloxera. However, it is unknown to what extent this practice influences root-associated microbial communities. A field survey of bacteria in soil surrounding the roots (rhizosphere) of 4 cultivars × 4 rootstock combinations was conducted to determine whether rootstock and cultivar genotypes are important drivers of rhizosphere community diversity and composition. Differences in α-diversity was highly dependent on rootstock–cultivar combinations, while bacterial community structure primarily clustered according to cultivar differences, followed by differences in rootstocks. Twenty-four bacterial indicator genera were significantly more abundant in one or more cultivars, while only thirteen were found to be specifically associated with one or more rootstock genotypes, but there was little overlap between cultivar and rootstock indicator genera. Bacterial diversity in grafted grapevines was affected by both cultivar and rootstock identity, but this effect was dependent on which diversity measure was being examined (i.e., α- or β-diversity) and specific rootstock–cultivar combinations. These findings could have functional implications, for instance, if specific combinations varied in their ability to attract beneficial microbial taxa which can control pathogens and/or assist plant performance.


2021 ◽  
Vol 9 (7) ◽  
pp. 1490
Author(s):  
Camila E. Orsso ◽  
Ye Peng ◽  
Edward C. Deehan ◽  
Qiming Tan ◽  
Catherine J. Field ◽  
...  

The gut microbiome is hypothesized to play a crucial role in the development of obesity and insulin resistance (IR); the pathways linking the microbiome to IR in pediatrics have yet to be precisely characterized. We aimed to determine the relationship between the gut microbiome composition and metabolic functions and IR in children with obesity. In a cross-sectional study, fecal samples from children with obesity (10–16 years old) were collected for taxonomical and functional analysis of the fecal microbiome using shotgun metagenomics. The homeostatic model assessment for insulin resistance (HOMA-IR) was determined using fasting glucose and insulin. Associations between HOMA-IR and α-diversity measures as well as metabolic pathways were evaluated using Spearman correlations; relationships between HOMA-IR and β-diversity were assessed by permutational multivariate analysis of variance. Twenty-one children (nine males; median: age = 12.0 years; BMI z-score = 2.9; HOMA-IR = 3.6) completed the study. HOMA-IR was significantly associated with measures of α-diversity but not with β-diversity. Children with higher HOMA-IR exhibited lower overall species richness, Firmicutes species richness, and overall Proteobacteria species Shannon diversity. Furthermore, HOMA-IR was inversely correlated with the abundance of pathways related to the biosynthesis of lipopolysaccharides, amino acids, and short-chain fatty acids, whereas positive correlations between HOMA-IR and the peptidoglycan biosynthesis pathways were observed. In conclusion, insulin resistance was associated with decreased microbial α-diversity measures and abundance of genes related to the metabolic pathways. Our study provides a framework for understanding the microbial alterations in pediatric obesity.


2021 ◽  
Vol 9 (11) ◽  
pp. 2311
Author(s):  
Ravinder Nagpal ◽  
Nagaraju Indugu ◽  
Prashant Singh

Diet is one of the most important factors regulating and influencing the composition of our gut microbiome, but the specific effects of commonly used antimicrobial agents i.e., food preservatives present within foods, are not completely understood. In this study, we examined the effect of the three widely used food-grade preservatives i.e., benzoic acid, potassium sorbate, and sodium nitrite, in recommended levels, on the gut microbiota diversity and composition in a mouse model. The analysis of β-diversity reveals distinct signatures of the gut microbiota between mice consuming different preservatives. Further analyses of α-diversity indices also show that the three preservatives induce specific patterns of microbial diversity, with diversity being lowest in mice consuming potassium sorbate. In terms of bacterial abundance, each of the three preservatives demonstrated unique microbial signatures, mainly affecting the proportions of bacterial taxa belonging to Bacteroidetes, Verrucomicrobia, and Proteobacteria. Specifically, we find the increased proportion of Bacteroides, Blautia, Ruminococcus, Oscillospira, and Dorea in mice fed with benzoate; increased abundance of Firmicutes, Turicibacter, and Alkaliphilus by sodium nitrate; and increased proportion of Parabacteroides and Adlercreutzia by potassium sorbate. The findings improve our understanding of how food-grade preservatives may influence the gut microbiota composition and diversity and should facilitate prospective studies investigating diet-microbiome interactions in relation to intestinal and metabolic health.


Nutrients ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 3992
Author(s):  
Tymofiy Lutsiv ◽  
Tiffany L. Weir ◽  
John N. McGinley ◽  
Elizabeth S. Neil ◽  
Yuren Wei ◽  
...  

The gut microbiome is involved in the host’s metabolism, development, and immunity, which translates to measurable impacts on disease risk and overall health. Emerging evidence supports pulses, i.e., grain legumes, as underutilized nutrient-dense, culinarily versatile, and sustainable staple foods that promote health benefits through modulating the gut microbiota. Herein, the effects of pulse consumption on microbial composition in the cecal content of mice were assessed. Male mice were fed an obesogenic diet formulation with or without 35% of the protein component comprised by each of four commonly consumed pulses—lentil (Lens culinaris L.), chickpea (Cicer arietinum L.), common bean (Phaseolus vulgaris L.), or dry pea (Pisum sativum L.). Mice consuming pulses had distinct microbial communities from animals on the pulse-free diet, as evidenced by β-diversity ordinations. At the phylum level, animals consuming pulses showed an increase in Bacteroidetes and decreases in Proteobacteria and Firmicutes. Furthermore, α-diversity was significantly higher in pulse-fed animals. An ecosystem of the common bacteria that were enhanced, suppressed, or unaffected by most of the pulses was identified. These compositional changes are accompanied by shifts in predicted metagenome functions and are concurrent with previously reported anti-obesogenic physiologic outcomes, suggestive of microbiota-associated benefits of pulse consumption.


2020 ◽  
Vol 648 ◽  
pp. 19-38
Author(s):  
AI Azovsky ◽  
YA Mazei ◽  
MA Saburova ◽  
PV Sapozhnikov

Diversity and composition of benthic diatom algae and ciliates were studied at several beaches along the White and Barents seas: from highly exposed, reflective beaches with coarse-grained sands to sheltered, dissipative silty-sandy flats. For diatoms, the epipelic to epipsammic species abundance ratio was significantly correlated with the beach index and mean particle size, while neither α-diversity measures nor mean cell length were related to beach properties. In contrast, most of the characteristics of ciliate assemblages (diversity, total abundance and biomass, mean individual weight and percentage of karyorelictids) demonstrated a strong correlation to beach properties, remaining low at exposed beaches but increasing sharply in more sheltered conditions. β-diversity did not correlate with beach properties for either diatoms or ciliates. We suggest that wave action and sediment properties are the main drivers controlling the diversity and composition of the intertidal microbenthos. Diatoms and ciliates, however, demonstrated divergent response to these factors. Epipelic and epipsammic diatoms exhibited 2 different strategies to adapt to their environments and therefore were complementarily distributed along the environmental gradient and compensated for each other in diversity. Most ciliates demonstrated a similar mode of habitat selection but differed in their degree of tolerance. Euryporal (including mesoporal) species were relatively tolerant to wave action and therefore occurred under a wide range of beach conditions, though their abundance and diversity were highest in fine, relatively stable sediments on sheltered beaches, whereas the specific interstitial (i.e. genuine microporal) species were mostly restricted to only these habitats.


2020 ◽  
Vol 96 (8) ◽  
Author(s):  
Judith Mogouong ◽  
Philippe Constant ◽  
Robert Lavallée ◽  
Claude Guertin

ABSTRACT The gut microbial communities of beetles play crucial roles in their adaptive capacities. Environmental factors such as temperature or nutrition naturally affect the insect microbiome, but a shift in local conditions like the population density on a host tree could also lead to changes in the microbiota. The emerald ash borer (EAB), Agrilus planipennis Fairmaire, is an exotic wood borer that causes environmental and economic damage to ash trees in North America. This study aimed to describe the taxonomic structure of the EAB gut microbiome and explore its potential relationship with borer population size. The number of EAB adults collected per tree through a 75 km transect from an epicenter allowed the creation of distinct classes of population density. The Gammaproteobacteria and Ascomycota predominated in bacterial and fungal communities respectively, as determined by sequencing of the bacterial 16S rRNA gene and the fungal internal transcribed spacer ITS2. Species richness and diversity of the bacterial community showed significant dependence on population density. Moreover, α-diversity and β-diversity analysis revealed some indicator amplicon sequence variants suggesting that the plasticity of the gut microbiome could be related to the EAB population density in host trees.


2004 ◽  
Vol 94 (2) ◽  
pp. 111-121 ◽  
Author(s):  
P.A.V. Borges ◽  
V.K. Brown

AbstractThe arthropod species richness of pastures in three Azorean islands was used to examine the relationship between local and regional species richness over two years. Two groups of arthropods, spiders and sucking insects, representing two functionally different but common groups of pasture invertebrates were investigated. The local–regional species richness relationship was assessed over relatively fine scales: quadrats (= local scale) and within pastures (= regional scale). Mean plot species richness was used as a measure of local species richness (= α diversity) and regional species richness was estimated at the pasture level (= γ diversity) with the ‘first-order-Jackknife’ estimator. Three related issues were addressed: (i) the role of estimated regional species richness and variables operating at the local scale (vegetation structure and diversity) in determining local species richness; (ii) quantification of the relative contributions of α and β diversity to regional diversity using additive partitioning; and (iii) the occurrence of consistent patterns in different years by analysing independently between-year data. Species assemblages of spiders were saturated at the local scale (similar local species richness and increasing β-diversity in richer regions) and were more dependent on vegetational structure than regional species richness. Sucking insect herbivores, by contrast, exhibited a linear relationship between local and regional species richness, consistent with the proportional sampling model. The patterns were consistent between years. These results imply that for spiders local processes are important, with assemblages in a particular patch being constrained by habitat structure. In contrast, for sucking insects, local processes may be insignificant in structuring communities.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pei Wang ◽  
Xiao Kong ◽  
Hongsong Chen ◽  
Youlun Xiao ◽  
Huijun Liu ◽  
...  

Microbial communities associated with the plant phyllosphere and endosphere can have both beneficial as well as detrimental effects on their hosts. There is an ongoing debate to which extend the phyllosphere and endosphere microbiome assembly is controlled by the host plant how pronounced cultivar effects are. We investigated the bacterial and fungal communities from the phyllosphere and endosphere of 10 different rice cultivars grown under identical environmental conditions in the frame of a targeted approach to identify drivers of community assembly. The results indicated that the endophytic bacterial communities were clearly separated into two groups. The α-diversity and microbial network complexity within Group I were significantly lower than in Group II. Moreover, the genera Nocardioides, Microvirga, and Gaiella were significantly more abundant in Group II and only present in the interaction networks of this group. These three genera were significantly correlated with α- and β-diversity of the endophytic bacterial community and thus identified as major drivers of the endosphere community. We have identified keystone taxa that shape endophytic bacterial communities of different rice cultivars. Our overall findings provide new insights into plant-microbe interactions, and may contribute to targeted improvements of rice varieties in the future.


2019 ◽  
Author(s):  
Kittipong Chaisiri ◽  
A. Christina Gill ◽  
Alexandr A. Stekolnikov ◽  
Soawapak Hinjoy ◽  
John W. McGarry ◽  
...  

AbstractScrub typhus, caused by a bacterial pathogen (Orientia spp.), is a potentially life-threatening febrile illness widely distributed in the Asia-Pacific region and is emerging elsewhere. The infection is transmitted by the larval stage of trombiculid mites (“chiggers”) that often exhibit low host specificity. Here, we present an analysis of chigger ecology for 38 species sampled from 11 provinces of Thailand and microbiomes for eight widespread species. In total, >16 000 individual chiggers were collected from 1 574 small mammal specimens belonging to 18 species across four horizontally-stratified habitat types. Chigger species richness was positively associated with higher latitudes, dry seasonal conditions, and host maturity; but negatively associated with increased human land use. Human scrub typhus incidence was found to be positively correlated with chigger species richness. The bacterial microbiome of chiggers was highly diverse, with Sphingobium, Mycobacterium, Neisseriaceae and various Bacillales representing the most abundant taxa. Only Leptotrombidium deliense was found to be infected with Orientia. β-diversity, but not α-diversity, was significantly different between chigger species and geographic regions, although not between habitat types. This first field survey of the chigger microbiome provides a framework for future studies on interactions between pathogens and other symbionts in these understudied vectors.


Sign in / Sign up

Export Citation Format

Share Document