scholarly journals Rheological properties of tomato ketchup

10.5219/1161 ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 730-734
Author(s):  
Vojtěch Kumbár ◽  
Sylvie Ondrušíková ◽  
Šárka Nedomová

The objective of this paper was to determine the rheological properties especially shear stress and apparent viscosity vs. shear strain rate, and density of commercially available but also homemade tomato ketchup. The effect of tomato content of density and apparent viscosity of tomato ketchup was also described. Shear stress and apparent viscosity were observed in shear strain rates range from 0.1 s-1 up to 68 s-1. All measurements were carried out at a constant temperature of 22 °C. Experimental results were modeled using a power-law (also known as Ostwald-de Waele) model (R2 ranged from 0.9508 up to 0.9991). The flow behaviour of all measured tomato ketchup samples exhibited non-Newtonian pseudoplastic (shear thinning) behavior where the flow index (n) showed values between 0 and 1. Flow index (n) and consistency coefficient (K) can be used especially in numerical simulation of the flow behaviour of pseudoplastic (shear thinning) liquids.

1974 ◽  
Vol 13 (67) ◽  
pp. 27-35 ◽  
Author(s):  
G. Holdsworth

Examination of the past and present behaviour of the Erebus Glacier tongue over the last 60 years indicates that a major calving from the tongue appears to be imminent. Calculations of the regime of the tongue indicate that bottom melt rates may exceed 1 m a−1. By successive mapping of the ice tongue between the years 1947 and 1970, longitudinal strain-rates were determined using the change in distance between a set of 15 teeth, which are a prominent marginal feature of the tongue. Assuming a flow law for ice of the form where τ is the effective shear stress and is the effective shear strain-rate, values of the exponent n = 3 and B = 1 × 108 N m−2 are determined. These are in fair agreement with published values.


2013 ◽  
Vol 770 ◽  
pp. 396-401 ◽  
Author(s):  
Yan Peng ◽  
Bing Hai Lv ◽  
Ju Long Yuan ◽  
Hong Bo Ji ◽  
Lei Sun ◽  
...  

Non-Newtonian fluid is a kind of fluid that its shear stress is not always keeps a linear relationship with the shear strain rate. An overview of its applications was made here. Based on the special rheological properties, non-Newtonian fluids are divided into different types and used as additives, mediums and protective materials in many fields. The paper focuses on its applications in fluid rheological properties improving, damping devices, individual protection equipments and mechanical processing. The main achievements in application of the non-Newtonian fluid were introduced and a further prospect was also summarized.


1996 ◽  
Vol 23 ◽  
pp. 247-252 ◽  
Author(s):  
Li Jun ◽  
T.H Jacka ◽  
W.F. Budd

Laboratory-prepared fine-grained, initially isotropic polycrystalline ice samples were deformed under conditions of simple shear with simultaneous uniaxial compression at a constant temperature of −2.0°C. The aim was to investigate the effects of stress configuration on the flow rate of initially isotropic ice and on ice with subsequent stress and strain-induced anisotropy. Experiments were carried out for various combinations of shear and compression with shear stress ranging from 0 to 0.49 MPa and compressive stress ranging from 0 to 0.98 MPa, but such that for every experiment the octahedral shear stress was 0.4 MPa.The strain curves resulting from the experiments clearly exhibit minimum strain rates while the ice is still isotropic, and steady-state tertiary strain rates along with the development of steady-state anisotropic fabric patterns. With constant octahedral stress (root-mean-square of the principal stress deviators), the minimum octahedral shear-strain rate has no dependence on stress configuration. This result supports the hypothesis that the flow of isotropic ice is dependent only on the second invariant of the stress tensor. This fundamental assumption has been used to provide a general description of ice-flow behaviour independent of the stress configuration (e.g. Nye, 1953; Glen, 1958; Budd, 1969).For the tertiary flow of anisotropic ice, the octahedral strain rate is stress-state dependent as a consequence of the developed crystal-orientation fabric, which is also stress-state dependent, and which develops with strain and rotation. The present tests indicate that the enhancement factor for steady-state tertiary octahedral shear-strain rate depends on the shear or compression fraction and varies from about 10 for simple shear (with zero compression) to about 3 for uniaxial compression (with zero shear).


1974 ◽  
Vol 13 (67) ◽  
pp. 27-35 ◽  
Author(s):  
G. Holdsworth

Examination of the past and present behaviour of the Erebus Glacier tongue over the last 60 years indicates that a major calving from the tongue appears to be imminent. Calculations of the regime of the tongue indicate that bottom melt rates may exceed 1 m a−1. By successive mapping of the ice tongue between the years 1947 and 1970, longitudinal strain-rates were determined using the change in distance between a set of 15 teeth, which are a prominent marginal feature of the tongue. Assuming a flow law for ice of the form where τ is the effective shear stress and is the effective shear strain-rate, values of the exponent n = 3 and B = 1 × 108 N m−2 are determined. These are in fair agreement with published values.


2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Xiaoling Liu ◽  
Mingming Ma ◽  
Peiran Yang ◽  
Feng Guo

A new method for solving the shear stress and the effective viscosity of Eyring shear-thinning fluid in thermal elastohydrodynamic lubrication (EHL) was proposed and applied to two models. Model 1 is the thermal EHL model with one-direction velocity, and model 2 is the spinning thermal EHL model in which the velocity varies with coordinates. Comparisons between the new and the existing method were carried out. Results show that only replacing the shear strain rate of model 1 with that of model 2, the shear stress and the effective viscosity of model 2 for Eyring shear-thinning fluid can be obtained. For model 1, results obtained with the two methods are the same. The new method can be qualified and applied into model 2. It is proved that the new method has higher efficiency for shear-thinning fluid than the existing method. Therefore, the new method is more efficient and can be used for spinning Eyring shear-thinning thermal EHL.


1996 ◽  
Vol 23 ◽  
pp. 247-252 ◽  
Author(s):  
Li Jun ◽  
T.H Jacka ◽  
W.F. Budd

Laboratory-prepared fine-grained, initially isotropic polycrystalline ice samples were deformed under conditions of simple shear with simultaneous uniaxial compression at a constant temperature of −2.0°C. The aim was to investigate the effects of stress configuration on the flow rate of initially isotropic ice and on ice with subsequent stress and strain-induced anisotropy. Experiments were carried out for various combinations of shear and compression with shear stress ranging from 0 to 0.49 MPa and compressive stress ranging from 0 to 0.98 MPa, but such that for every experiment the octahedral shear stress was 0.4 MPa. The strain curves resulting from the experiments clearly exhibit minimum strain rates while the ice is still isotropic, and steady-state tertiary strain rates along with the development of steady-state anisotropic fabric patterns. With constant octahedral stress (root-mean-square of the principal stress deviators), the minimum octahedral shear-strain rate has no dependence on stress configuration. This result supports the hypothesis that the flow of isotropic ice is dependent only on the second invariant of the stress tensor. This fundamental assumption has been used to provide a general description of ice-flow behaviour independent of the stress configuration (e.g. Nye, 1953; Glen, 1958; Budd, 1969). For the tertiary flow of anisotropic ice, the octahedral strain rate is stress-state dependent as a consequence of the developed crystal-orientation fabric, which is also stress-state dependent, and which develops with strain and rotation. The present tests indicate that the enhancement factor for steady-state tertiary octahedral shear-strain rate depends on the shear or compression fraction and varies from about 10 for simple shear (with zero compression) to about 3 for uniaxial compression (with zero shear).


2015 ◽  
Vol 14 (2) ◽  
pp. 31 ◽  
Author(s):  
L. E. Silva ◽  
C. A. C. Santos ◽  
J. E. S. Ribeiro ◽  
C. C. Souza ◽  
A. M. S. Sant’Ana

Rheology attempts to define a relationship between the stress acting on a given material and the resulting deformation and/or flow that takes place. Thus, the knowledge of rheological properties of fluid materials such as vegetable oils generates auxiliary data that can be used in its storage and application. In this context, the aim of this study was to evaluate the rheological behavior of vegetable oils (cotton, canola, sunflower, corn and soybean) at different temperatures, using four rheological models (Ostwald- de-Waelle, Herschel-Bulkley, Newton and Bingham). The rheological properties were determined using a Thermo Haake rheometer with concentric cylinder geometry. Measurements were taken at 30, 45 and 60 °C by controlling the temperature using a thermostatic bath coupled to the equipment. The software Rheowin Pro Job Manager was used for process control and data record. The rheograms were obtained by measuring the values of shear stress varying the shear rate from 100 to 600 s-1 within 250 seconds. For the analysis of the apparent viscosity at different shear rates was applied simple linear regression until 2nd degree with the aid of SAS (SAS/Stat 9.2) program. The apparent viscosity data were submitted to analysis of variance and the averages were compared by Tukey test at 5% of probability. Higher temperatures of the samples were correlated to lower shear stress values, hence lower values for viscosity and consistency index were obtained, since it is known that the density and viscosity are highly sensitive to temperature and that the increase in temperature results in reduction of viscosity, benefiting the fluid flow. The models of Newton and Ostwald-de-Waelle were chosen to evaluate the rheological behavior of the samples, showing a good fit for the rheological data.


1997 ◽  
Vol 3 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Siyoul Jang ◽  
John A. Tichy

Electro-Rheological (ER) fluid behavior is similar to Bingham fluid’ s. Only when the shear stress magnitude of ER fluid exceeds the yield stress, Newtonian flow results. Continuous shear strain rate equation about shear stress which simulates Bingham-like fluid shows viscosity variations. Shear yield stress is controlled by electric fields. Electric fields in circumferential direction around the journal are also changeable because of gap distance. These values make changes of spring and damping coefficients of journal bearings compared to Newtonian flow case. Implicit viscosity variation effects according to shear strain rates of fluid are included in generalized Reynolds' equation for submerged journal bearing. Fluid film pressure and perturbation pressures are solved using switch function of Elord's algorithm for cavitation boundary condition. Spring and damping coefficients are obtained for several parameters that determine the characteristics of ER fluids under a certain electric field. From these values stability region for simple rotor-bearing system is computed. It is found that there are no big differences in load capacities with the selected electric field parameters at low eccentric region and higher electric field can support more load with stability at low eccentric region.


2013 ◽  
Vol 33 (2) ◽  
pp. 141-148 ◽  
Author(s):  
Germán Ayala Valencia ◽  
Ana Cecilia Agudelo Henao ◽  
Rubén Antonio Vargas Zapata

Abstract Glycerol/starch (G/S) solutions were prepared at different concentrations, with a weight ratio of G/S=0.0, 0.1, 0.2, 0.3, 0.4 and 0.5, and rheological properties were analyzed at 30, 40, 50, 60 and 70°C. Power law dependency of the apparent viscosity as a function of the shear rate is the most appropriate model for describing the rheological behavior of cassava starch solutions as a function of glycerol concentrations. All solutions showed a pseudoplastic behavior; the flow index (n) did not show significant changes as a function of temperature and glycerol concentration. However, the apparent viscosity (μa) and the consistency coefficient (K) did show strong variations with temperature and glycerol content. The temperature variation of both μa and K were better fitted to an exponential model type exp(Ea /RT), logμa(K) vs. 1000/T. The activation energy of the K data for the solution without glycerol (G/S=0.0) was 13.64 KJ/mol, and it decreased with increasing the content of glycerol in the solutions, becoming 6.14 KJ/mol for G/S=0.5. On the contrary, the activation energy for the μa data increased when increasing the glycerol concentration. The effect of glycerol concentration was also modeled using polynomial and exponential fittings.


2006 ◽  
Vol 12 (6) ◽  
pp. 467-476 ◽  
Author(s):  
Ö. Gün ◽  
N. D. Işsikli

The effects of fat and non fat dry matter (NFDM) concentration and storage time on the physical properties and acidity of yoghurts made using commercial probiotic cultures (ABY and ABT-1) were investigated by using response surface methodology. All yoghurts made with ABY and ABT-1 cultures exhibited shear thinning behaviour. The power low model was used to describe the shear thinning behaviour of yoghurt samples. The flow behaviour index ( n) and the consistency coefficient ( m) were determined. NFDM levels in milk strongly affected syneresis, apparent viscosity at a constant speed of 100rpm, flow behaviour index and the consistency coefficient. Titratable acidity and pH were mainly affected by the storage time. Under all conditions examined, yoghurt made with ABT-1 culture had higher apparent viscosity, consistency coefficient and pH value than those of the yoghurt made using ABY culture.


Sign in / Sign up

Export Citation Format

Share Document