scholarly journals Current Status of Pediatric Formulations for Chronic and Acute Children’ Diseases: Applications and Future Perspectives

Author(s):  
Panoraia Siafaka ◽  
Esra İpekçi ◽  
Emre Şefik Çağlar ◽  
Neslihan Üstündağ Okur ◽  
Derya Büyükkayhan

Infants and other children can be affected by various acute, chronic and many of them rare illnesses. Developing drugs for children is very challenging since they cannot intake tablets or hard oral solid dosage forms. Besides, most of the prescribed pediatric medications are unlicensed. The biggest issue that clinicians have to solve is that dosing in children is not based on weight or surface area of the body, as it happened in adults but is related to age variations in drug absorption, distribution, metabolism, and elimination. Thus, for pediatric patients, various therapeutic approaches have been proposed so as to develop suitable formulations such as liquid dosage forms, flexible capsules, milk-based products, etc. In addition, the administration of current pharmaceutical products to children might lead to some serious side effects which can also happen in adults but with a lower risk. Especially, infants are at high risk of getting poisoned by taking drugs used for adults. Moreover, children are very sensitive to the taste and smell of some pharmaceutical vehicles and can resist to intake them and this situation leads parents to search for tasteless and odorless medications. In this study, the current formulations for various diseases intended to be used in pediatric patients as well as various chronic and acute diseases of childhood are summarized. Authors believe that this review can help professionals who want to work with pediatric formulations to design more efficient and child-friendly drug delivery systems.

2018 ◽  
Vol 19 (11) ◽  
pp. 3415 ◽  
Author(s):  
Kenya Kamimura ◽  
Takeshi Yokoo ◽  
Shuji Terai

The pancreas is a key organ involved in digestion and endocrine functions in the body. The major diseases of the pancreas include pancreatitis, pancreatic cancer, cystic diseases, pancreatic divisum, islet cell tumors, endocrine tumors, diabetes mellitus, and pancreatic pain induced by these diseases. While various therapeutic methodologies have been established to date, however, the improvement of conventional treatments and establishment of novel therapies are essential to improve the efficacy. For example, conventional therapeutic options, including chemotherapy, are not effective against pancreatic cancer, and despite improvements in the last decade, the mortality rate has not declined and is estimated to become the second cause of cancer-related deaths by 2030. Therefore, continuous efforts focus on the development of novel therapeutic options. In this review, we will summarize the progress toward the development of gene therapies for pancreatic diseases, with an emphasis on recent preclinical studies and clinical trials. We aim to identify new areas for improvement of the current methodologies and new strategies that will lead to safe and effective gene therapeutic approaches in pancreatic diseases.


2021 ◽  
Vol 9 (4) ◽  
pp. 101-124
Author(s):  
Chiluvuru Vani ◽  
◽  
K. Srinivas Reddy ◽  

Over last 30 years pulsatile drug delivery system has achieved a lot of importance in drug delivery technology. And the reason why this pulsatile drug delivery is gaining importance is because of its strategy of delivering drug molecule at right place, right time. There are certain diseases which are controlled by biological clock of our body and follow circadian rhythms like congestive heart failure, asthma, rheumatoid arthritis ,osteoarthritis, inflammatory disorders and other hormonal disorders, for this type of diseases conventional solid dosage forms like immediate release tablets or modified dosage forms like sustained, controlled release tablets cant give the required therapeutic response and also for such diseases delivering the drug at right time in right amount is very important. And that task is accomplished by this pulsatile drug delivery system. These pulsatile drug delivery framework is planned by the organic mood i.e., biological rhythms of the body, and medication conveyance is worked with by as per disease cadence. The rule for the utilization of pulsatile drug delivery of the medications is the place where a consistent drug discharge isnt wanted. The principle for the utilization of pulsatile release of the medications is the place where a steady drug discharge isnt wanted, yet drug release must be planned in such a way that, quick medication discharge is accomplished after the lag time. Current review examined the clarifications for improvement of pulsatile drug delivery framework in accordane with body circadian rhythm, kinds of the illness during which pulsatile discharge is required, order, assessments, benefits, impediments.


2019 ◽  
Vol 9 (4-s) ◽  
pp. 822-825
Author(s):  
Abhishek Meher ◽  
Nachiket S. Dighe

Taste-masking techniques are applied to mask or overcome the bitter or unpleasant taste of active pharmaceutical ingredients/drugs to achieve patient acceptability and compliance. Oral administration of bitter or unpleasant tasting drugs is often the biggest barrier for patient groups, such as pediatrics and geriatrics [1, 2]. Unless the active ingredient is tasteless or does not have any unpleasant taste, taste-masking plays a key role in the success of a final solid oral dosage form. The efficiency of taste-masking is often a key determinant for the success of specialized dosage forms like orally disintegrating tablets and films, and chewable tablets [2]. The mechanisms of taste-masking techniques often rely on two major approaches: the first is to add sweeteners, flavors, and effervescent agents to mask the unpleasant taste, and the second is to avoid the contact of bitter/unpleasant drugs with taste buds. In the past few years, significant progress has been made in the area of taste-masking by applying novel strategies and techniques, such as hot-melt extrusion and microencapsulation.[1,3] The following presents an overview and current status of the industrial approaches and platforms used for taste-masking in oral dosage forms. [1, 2, 4]  Many pharmaceutical companies are switching their products from tablets to fast dissolving oral thin films (OTFs).[6,7] Films have all the advantages of tablets (precise dosage, easy administration) and those of liquid dosage forms (easy swallowing, rapid bioavailability). Statistics have shown that four out of five patients prefer orally disintegrating dosage forms over conventional solid oral dosages forms. Pediatric, geriatric, bedridden, emetic patients and those with Central Nervous System disorders, have difficulty in swallowing or chewing solid dosage forms.[7,8] Many of these patients are non-compliant in administering solid dosage forms due to fear of choking.[9] OTFs when placed on the tip or the floor of the tongue are instantly wet by saliva. This technology provides a good platform for patent non- infringing product development and for increasing the patent life-cycle of the existing products. [10, 11]  


Author(s):  
Kinesh V P ◽  
Neelam D P ◽  
Punit B ◽  
Bhavesh S.B ◽  
Pragna K. S

Diabetes mellitus is a serious pathologic condition that is responsible for major healthcare problems worldwide and costing billions of dollars annually. Insulin replacement therapy has been used in the clinical management of diabetes mellitus for more than 84 years. The present mode of insulin administration is by the subcutaneous route through which insulin is presented to the body in a non-physiological manner having many challenges. Hence novel approaches for insulin delivery are being explored. Challenges to oral route of insulin administration are: rapid enzymatic degradation in the stomach, inactivation and digestion by proteolytic enzymes in the intestinal lumen and poor permeability across intestinal epithelium because of its high molecular weight and lack of lipophilicity. Liposomes, microemulsions, nanocubicles, and so forth have been prepared for the oral delivery of insulin. Chitosan-coated microparticles protected insulin from the gastric environment of the body and released intestinal pH. Limitations to the delivery of insulin have not resulted in fruitful results to date and there is still a need to prepare newer delivery systems, which can produce dose-dependent and reproducible effects, in addition to increased bioavailability.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 20 (13) ◽  
pp. 1142-1153 ◽  
Author(s):  
Sreyashi Chandra ◽  
Md. Tanjim Alam ◽  
Jhilik Dey ◽  
Baby C. Pulikkaparambil Sasidharan ◽  
Upasana Ray ◽  
...  

Background: The central nervous system (CNS) known to regulate the physiological conditions of human body, also itself gets dynamically regulated by both the physiological as well as pathological conditions of the body. These conditions get changed quite often, and often involve changes introduced into the gut microbiota which, as studies are revealing, directly modulate the CNS via a crosstalk. This cross-talk between the gut microbiota and CNS, i.e., the gut-brain axis (GBA), plays a major role in the pathogenesis of many neurodegenerative disorders such as Parkinson’s disease (PD), Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS) and Huntington’s disease (HD). Objective: We aim to discuss how gut microbiota, through GBA, regulate neurodegenerative disorders such as PD, AD, ALS, MS and HD. Methods: In this review, we have discussed the present understanding of the role played by the gut microbiota in neurodegenerative disorders and emphasized the probable therapeutic approaches being explored to treat them. Results: In the first part, we introduce the GBA and its relevance, followed by the changes occurring in the GBA during neurodegenerative disorders and then further discuss its role in the pathogenesis of these diseases. Finally, we discuss its applications in possible therapeutics of these diseases and the current research improvements being made to better investigate this interaction. Conclusion: We concluded that alterations in the intestinal microbiota modulate various activities that could potentially lead to CNS disorders through interactions via the GBA.


2014 ◽  
Vol 10 (3) ◽  
pp. 184-193 ◽  
Author(s):  
Atin Kalra ◽  
Shishu Goindi

The quest for achieving optimal therapeutic outcomes in pediatric patients has evaded the healthcare professionals for long and often lack of child specific dosage forms and the associated events that follow with it have been considered to be major contributor towards suboptimal outcomes. Consequently, there have been sustained efforts over the years to address this issue with the enactment of legislations like Best Pharmaceutical for Children Act (BPCA), Pediatric Research Equity Act (PREA) and Pediatric Regulation by European Union (EU) to incentivise the participation of pharmaceutical industry towards development of child friendly dosage forms. Initiatives taken in past by organisations like World Health Organisation (WHO) and Drugs for Neglected Diseases Initiative (DNDi) to spur the development of child friendly dosage forms has helped to address issues pertaining to management of Human Immunodeficiency Virus (HIV) and malaria in pediatric patients. Present efforts aimed at developing child friendly dosage forms include oro-dispersible platforms including thin films and mini-tablets. Despite these leaps and advancements in developing better dosage forms for children, lower therapeutic outcomes in pediatric patients continue to remain an unresolved issue because of detrimental effects of additional factors such as parents understanding of label instructions and complexities involved in executing pediatric clinical studies thus requiring a concerted effort from pharmaceutical companies, academic researchers, parents and healthcare providers to work for better treatment outcomes in children.


Author(s):  
Vikas Rathee ◽  
Kapil Pihwal ◽  
Neelam Pawar ◽  
Sheikh Aamir ◽  
Mohammad Shahbaz Alam ◽  
...  

: Regulatory is the heart of the Pharmaceutical Industries which acts as an interface between the industries and government authorities for the growth and development of pharmaceutical industry system of their respective country. In 2017, India was a pharmaceutical country valued at USD (United States Dollar) 13 billion and accounting for 20 percent of worldwide exports, making the country the main supplier of generic drugs worldwide. Ministry of Chemicals and Fertilizers, the Department of Pharmaceutical Products said that the national pharmaceutical market's gross revenue reached approximately US $ 18.12 billion in 2018 (Rs 129,015), growing 9.4% year-on-year and export retention in 2018 was US $ 17.88 billion. 19.14 billion US$ in 2019. The Union Ministry of Health and Family Welfare has increased by 13.1 percent to Rs 61,398 crore (US $ 8.98 billion) in the Union Budget 2019-20. The Indian pharmaceutical market is facing many difficulties such as central and state regulatory compliance, data integrity, ethics committee in clinical trials, governmental control over the price of medicine, lack of research and so on. We are discussing in our article that top 10 pharmaceutical companies are doing business, their turnover in 2020 and challenge in today's era. We discuss future plans and solutions to problems, so that they can be ranked first in the world.


Sign in / Sign up

Export Citation Format

Share Document