scholarly journals NONLINEAR MODELS FOR INFRARED DRYING OF MINT

2019 ◽  
Vol 49 (1) ◽  
pp. 19-24
Author(s):  
E. K. BASAR ◽  
N. HEYBELI ◽  
M. Z. FIRAT ◽  
C. ERTEKIN*

In this paper, 105 different semitheoretical and empirical thin layer drying models were used for describing the drying process of the mint leaves. Comparisons of the overall goodness of fit were based on Coefficient of Determination (R2), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). It was concluded that five parameter Cedergreen-Ritz-Streibig modified log-logistic functions with alpha equal to 0.25 (CRS5C) model describe the infrared drying process of the mint leaves. Furthermore, temperature effect was investigated by using reduction test. Finally, it was found that the effect is statistically significant and the model with separate trends fits these data better.

2019 ◽  
Vol 37 (No. 2) ◽  
pp. 128-134
Author(s):  
Osman Yağız Turan ◽  
Ebru Fıratlıgil

Fruit and vegetable dehydration has been extensively studied for the improvement of food preservation. Effects of drying temperature on the drying kinetics of thyme were investigated and a suitable drying model was obtained to describe the drying process. Drying behaviour of thyme leaves at temperatures of 50, 60, 70 and 80°C was determined by using a conventional drying oven, and moisture ratio and drying rates were calculated. Four different thin layer drying models, namely Lewis, Henderson and Pabis, Page, and logarithmic models, were used to fit the experimental moisture ratio data. Three statistical parameters: coefficient of determination (R<sup>2</sup>), chi-square (χ<sup>2</sup>) and root mean square error (RMSE) were used to compare the goodness of fit of the drying models. Logarithmic model and Page model give the best description of the drying process kinetics of thyme leaves by comparing the experimental values and predicted values.


2013 ◽  
Vol 371 ◽  
pp. 323-327
Author(s):  
Miloš Vasić ◽  
Zagorka Radojević

Drying results, determined on samples made of masonry clay from the locality "Banatski Karlovac", are presented in this study. Experimental investigations were carried out in a laboratory recirculation dryer in which drying parameters (humidity, temperature, and velocity) could be programmed, controlled and monitored during drying process. Several mathematical models were used for drying process modelling. New semi-theoretical thin layer drying model, for heavy clay products, was developed and presented in this study. It represents a modification of Page's and logarithm's thin layer drying models. Results presented in this study have shown that new thin layer drying model describes and correlates the best experimentally determined drying process.


2014 ◽  
Vol 10 (4) ◽  
pp. 839-848 ◽  
Author(s):  
Mehmet Başlar ◽  
Salih Karasu ◽  
Mahmut Kiliçli ◽  
Ahmet Abdullah Us ◽  
Osman Sağdiç

Abstract In this study, the drying kinetics of pomegranate arils, the degradation kinetics of some bioactive compounds, and changes in color values during the drying process were investigated. The drying process was performed by a forced air circulating oven at 55, 65, and 75°C. Drying times were calculated to be 1,020, 520, and 330 min, respectively. Effective moisture diffusivity values ranged from 5.39×10−11 to 1.70×10−10 m2 s−1 and increased with increases in temperature. Six different thin-layer drying models were applied to evaluate the goodness of the model. The degradation rate of bioactive compounds increased at higher temperatures; however, remaining amounts of phenolic, anthocyanin, and flavonoid compounds after drying were higher in samples dried at 75°C. The highest antioxidant capacity value was observed in the pomegranate arils dried at 75°C. While the L* values of pomegranate arils decreased after the drying process, the a* values increased.


2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Akinjide A Akinola ◽  
Stanley N. Ezeorah

 This study aims to investigate the drying characteristics of cassava, yam, and potato slices using a laboratory scale batch Refractance Window™ (RW) dryer. The experimental dryer was constructed by modifying a laboratory water bath. The bath was covered with a transparent Polyethylene terephthalate (PET) plastic film held in-place with angled edges. The cassava, yam, and potato slices were dried on the Refractance WindowTM dryer, and the variation of the moisture content of the slices during the drying process was measured. The water temperature beneath the plastic film was maintained at 60oC. The dehydration data were fitted to thin-layer drying models. Regression analysis suggested that the Haghi and Ghanadzadeh model best describes the dehydration behaviour for the 3 mm thick slices for the cassava, yam, and potato tubers. The coefficient of determination (R2) values of 0.999, 0.998, and 0.998 for the cassava, yam, and potato slices respectively were reported in all the models studied. The drying curves, the drying rate curves, and the Krischer curves, from the experimental drying data, was plotted. Observations indicate that the cassava, yams, and potatoes slices dried to below 0.11 g water/g-solid moisture content in about 150 min. This study was performed to facilitate the understanding of the design, modelling, and operations of a continuously operating RW dryer. Keywords: Refractance Window Drying, Thin Layer Drying Models, Yams, Cassava, Potatoes.


Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 244-249
Author(s):  
N.V. Tai ◽  
M.N. Linh ◽  
N.M. Thuy

In Vietnam, banana peels have been discarded as waste which is a potential source of raw material for food and other bioprocessing industries. Drying the peel offers opportunities for value addition into novel products, thus reducing waste from the fruit processing operations. This study presented the mathematical models of the thin-layer drying behaviour of banana peels using three air temperatures (60oC, 70oC and 80oC). The effect of drying temperature on the reduction of moisture content and drying rate of the banana peel was evaluated. A total of eight commonly drying models were used for choosing the best fitness model for describing the oven drying process. The effective moisture diffusivity and activation energy were calculated using Fick’s diffusion equation. The obtained results showed that increasing drying temperature accelerate the drying process, as well as, increasing drying rate and effective diffusivity. The goodness of fit tests base on the criterion indicated that the Page model gave the best fit to experimental results. The effective diffusivity varied from 2.29×10-8 – 3.25×10-8 m 2 /s. Effective diffusivity was satisfactorily by an Arrhenius relationship with activation energy within the 60-80°C temperature range. The obtained activation energy was 16.98 kJ/mol with a high coefficient of determination (R2 = 0.903).


2021 ◽  
Vol 4 (2) ◽  
pp. 98-107
Author(s):  
A. I. Gbasouzor ◽  
J. E. Dara ◽  
C. O. Mgbemena

ARS-680 environmental chamber was employed in this study to determine the drying behavior of sliced ginger rhizomes. Blanched and unblanched treated ginger rhizomes were considered at drying temperature of 40 °C for a period of 2 – 24 h. Linear and non-linear regression analyses were employed to establish the correlation that exits between the drying time and the moisture ratio. Correlation analysis, root mean square error (RMSE) and standard error of estimate (SEE) analysis were chosen in selecting the best thin layer drying models. Higher values of determination coefficient (R2) show goodness of fit and lower values of SEE implies better correlation; and RMSE values were also utilized in determining the goodness of fit. The drying data of the variously treated ginger samples were fitted into the twelve thin layer drying models and the data obtained were fitted by multiple non-linear regression technique. Blanched treated sample exhibited a better drying behavior losing about 82.87 % moisture content compared with unbleached sample that lost about 62.03 % of moisture content. Two-term exponential drying model proved to be the most suitable model for predicting the drying behavior of ginger rhizome. The model exhibited high R2 values of 0.9349-0.9792 (which are close to unity) for both blanched and unbleached samples. Also, it recorded relatively low values of RMSE and SEE (3.6865 - 2.0896 and 3.6564-2.7486 respectively) for both treatments.  


2016 ◽  
Vol 9 (1) ◽  
pp. 62-73
Author(s):  
Gede Arda ◽  
P.K. Diah Kencana ◽  
IBP. Gunadnya ◽  
Ni Luh Yulianti

Abstrak. Rebung bambu tabah (Gigantochloa nigrociliata KURZ) merupakan produk khas daerah Pupuan, Tabanan, Bali yang mempunyai potensi untuk dikembangkan sebagai produk yang bernilai ekonomis. Kajian awal proses pengeringan rebung untuk meningkatkan umur simpan rebung bambu Tabah dilakukan pada penelitian ini. Kurva laju pengeringan rebung bambu Tabah memberikan informasi penting untuk proses pengeringan. Oleh karena itu, tujuan penelitian ini adalah mempelajari karakteristik laju pengeringan rebung bambu Tabah melalui aplikasi model pengeringan lapisan tipis. Rebung bambu Tabah yang dibelah menjadi dua dan empat bagian dikeringkan pada suhu 50oC, 60oC, dan 70oC. Perubahan kadar air setiap saat kemudian dimodelkan dengan model Newton dan Page. Kesesuaian model yang digunakan dievaluasi dengan menentukan nilai koefisien determinasi (r2) dan RMSE dari model. Hasil menunjukkan bahwa model Page lebih baik digunakan untuk memodelkan pengeringan rebung bambu Tabah pada semua perlakuan. Model Newton menunjukkan ketidaksesuaian yang sangat tinggi pada suhu 50oC namun kesesuaiannya meningkat pada suhu yang lain.  Thin Layer Drying Model of Bamboo Shoots “Tabah” (Gigantochloa nigrociliata KURZ) Abstract. Bamboo shoots Tabah (Gigantochloa nigrociliata KURZ) is a unique product of Pupuan District, Tabanan, Bali which is potent to be developed as highly value product. Preliminary study of the bamboo shoots drying to enhance its storage life was conducted in this research. Bamboo shoots Tabah’s drying rate curve give an important information for its drying process. Therefore, the aim of this research was to study the characteristics of bamboo shoots Tabah drying by applying thin layer drying models. Bamboo shoots split into two and four pieces were dried under drying air temperatures 50oC, 60oC, and 70oC. Instantaneous moisture content of the shoots are modeled by Newton and Page model. The goodness of the models were evaluated by determining its coefficient of determination (r2) and RMSE. The results showed that Page model was better to model the bamboo shoots Tabah drying process on all drying treatments. The Newton Model indicated the worst fit on drying air temperature 50oC while showed better fit on other temperatures.


2017 ◽  
Vol 48 (1) ◽  
Author(s):  
Thais Destefani Ribeiro ◽  
Taciana Villela Savian ◽  
Tales Jesus Fernandes ◽  
Joel Augusto Muniz

ABSTRACT: The goal of this study was to elucidate the growth and development of the Asian pear fruit, on the grounds of length, diameter and fresh weight determined over time, using the non-linear Gompertz and Logistic models. The specifications of the models were assessed utilizing the R statistical software, via the least squares method and iterative Gauss-Newton process (DRAPER & SMITH, 2014). The residual standard deviation, adjusted coefficient of determination and the Akaike information criterion were used to compare the models. The residual correlations, observed in the data for length and diameter, were modeled using the second-order regression process to render the residuals independent. The logistic model was highly suitable in demonstrating the data, revealing the Asian pear fruit growth to be sigmoid in shape, showing remarkable development for three variables. It showed an average of up to 125 days for length and diameter and 140 days for fresh fruit weight, with values of 72mm length, 80mm diameter and 224g heavy fat.


2018 ◽  
Vol 12 (2) ◽  
pp. 79-85 ◽  
Author(s):  
Kamil Neyfel Çerçi ◽  
Özge Sufer

In this study, the dehydration behavior of zucchini using solar assisted drying system was examined according to 22 thin layer drying models available in literature. The correlation coefficient (R2), chi-square (χ2) and root mean square error (RMSE) values were calculated to check the suitability of models by non-linear regression analysis. It was found that Cubic and Modified Midilli-1 models were the most suitable equations and their R2 values were calculated as 0.99963. χ2 and RMSE values of related mathematical expressions were 1.89343×10‒5, 1.91692×10‒5 and 0.01685×10‒3, 0.01721×10‒3 respectively. In addition, heat transfer, mass transfer and diffusion coefficients, which were important parameters in design of drying systems were also determined as 5.18124 W/m2°C, 1.57129×10‒7 m/s and 2.335718×10‒9 m2/s respectively.


Sign in / Sign up

Export Citation Format

Share Document