scholarly journals Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam

Food Research ◽  
2021 ◽  
Vol 5 (5) ◽  
pp. 244-249
Author(s):  
N.V. Tai ◽  
M.N. Linh ◽  
N.M. Thuy

In Vietnam, banana peels have been discarded as waste which is a potential source of raw material for food and other bioprocessing industries. Drying the peel offers opportunities for value addition into novel products, thus reducing waste from the fruit processing operations. This study presented the mathematical models of the thin-layer drying behaviour of banana peels using three air temperatures (60oC, 70oC and 80oC). The effect of drying temperature on the reduction of moisture content and drying rate of the banana peel was evaluated. A total of eight commonly drying models were used for choosing the best fitness model for describing the oven drying process. The effective moisture diffusivity and activation energy were calculated using Fick’s diffusion equation. The obtained results showed that increasing drying temperature accelerate the drying process, as well as, increasing drying rate and effective diffusivity. The goodness of fit tests base on the criterion indicated that the Page model gave the best fit to experimental results. The effective diffusivity varied from 2.29×10-8 – 3.25×10-8 m 2 /s. Effective diffusivity was satisfactorily by an Arrhenius relationship with activation energy within the 60-80°C temperature range. The obtained activation energy was 16.98 kJ/mol with a high coefficient of determination (R2 = 0.903).

2019 ◽  
Vol 37 (No. 2) ◽  
pp. 128-134
Author(s):  
Osman Yağız Turan ◽  
Ebru Fıratlıgil

Fruit and vegetable dehydration has been extensively studied for the improvement of food preservation. Effects of drying temperature on the drying kinetics of thyme were investigated and a suitable drying model was obtained to describe the drying process. Drying behaviour of thyme leaves at temperatures of 50, 60, 70 and 80°C was determined by using a conventional drying oven, and moisture ratio and drying rates were calculated. Four different thin layer drying models, namely Lewis, Henderson and Pabis, Page, and logarithmic models, were used to fit the experimental moisture ratio data. Three statistical parameters: coefficient of determination (R<sup>2</sup>), chi-square (χ<sup>2</sup>) and root mean square error (RMSE) were used to compare the goodness of fit of the drying models. Logarithmic model and Page model give the best description of the drying process kinetics of thyme leaves by comparing the experimental values and predicted values.


Author(s):  
O.U. Dairo ◽  
T.M.A. Olayanju

Fundamental Information on Drying and Re-Wetting Characteristics of Agricultural Seeds Is Required in the Design and Aeration Systems as Well as in the Prediction of Drying Rate Using Various Mathematical Models. Thin-Layer Drying Experiments Were Conducted Using Air-Ventilated Oven to Simulate the Artificial Drying at Various Moisture Contents of Sesame Seed (6.9 to 18.2 % W.b) at Three Drying Temperatures of 40, 50 and 60OC. Five Drying Models Were Evaluated for the Thin-Layer Data. the Page Equation Fitted the Data Best, where Selection of the Best Model Was Obtained by Comparing the Coefficient of Determination (R2), the Standard Error of Moisture Content (SEM) and Mean Relative Percent Error (e) between the Experimental and Estimated Values. the Drying Rate of Sesame Seed under Drying Conditions Increased with Increased Temperature of Drying( 40 to 60OC) and Initial Moisture Content of Seed( 6.9, 11.5 and 18.2 % W.b). the Parameters “K” of the Page Model Increased with Increase in Temperature, while, Parameter ”n” Decreased with Temperature Increase and Increased with Increase in Moisture Content of Seed. the Effective Diffusivity Was Found to Be 2.32 X 10-11 M2s-1.


2007 ◽  
Vol 13 (1) ◽  
pp. 35-40 ◽  
Author(s):  
O. P. Sobukola ◽  
O. U. Dairo ◽  
L. O. Sanni ◽  
A. V. Odunewu ◽  
B. O. Fafiolu

Open sun drying experiments in thin layers of crain-crain (CC), fever (FV) and bitter (BT) leaves grown in Abeokuta, Nigeria were conducted. The drying process took place in the falling rate period and no constant rate period was observed from the drying curves. Eight thin layer mathematical drying models were compared using the multiple determination coefficients (R2), reduced chi-square (χ2) and root mean square error (RMSE) between the observed and predicted moisture ratios. Accordingly, Midilli et al. model satisfactorily described the drying curves of the three leaves with R2 of 0.9980, χ2 of 2.0×10-4 and RMSE of 1.09×10-2 for CC leaves; R2 of 0.9999, χ2 of 2×10-6 and RMSE of 1.11×10-3 for FV leaves; and R2 of 0.9998, χ2 of 1.9×10-5 and RMSE of 3.3×10-3 for BT leaves. The effective diffusivity was found to be 52.91×10-10, 48.72×10-10 and 43.42×10-10 m2/s for CC, BT and FV leaves, respectively.


2018 ◽  
Vol 2 ◽  
pp. 53-58
Author(s):  
Arjun Ghimire ◽  
Nirajan Magar

Curry leaves (Murraya koenigii L.) are the sweet smelling leaves of small tree of Rutaceae family native to Southwest Asia. In this study, the effect of temperatures (50, 55 and 60°C) on the drying of curry leaves was investigated. The experimental data were fitted to six thin layer mathematical models (Newton, Page, Handerson and Pabis, logarithmic, two-term exponential and Midilli et al). The models were evaluated in terms of coefficient of determination (R2), chi square (χ2) and root mean square error (RMSE). The Midilli et al model was best fitted to the experimental data of all the models evaluated. The effective diffusivity was calculated using Fick's diffusion equation, and the value varied from 2.07×10-12 m2/s to 2.643×10-12 m2/s. The activation energy and the diffusivity constant were found to be 21.808 kJ/mol and 4.667×10-8 m2/s respectively.


2012 ◽  
Vol 518-523 ◽  
pp. 3227-3230 ◽  
Author(s):  
He Xun Huang ◽  
Han Ping Chen ◽  
Zhi Feng Hu ◽  
Xiao Qian Ma

Since the adverse factors such as deficient penetration and long reaction time have restricted the complete microwave-used drying of municipal sludge, the microwave-induced drying was considered which has advantages in such aspects. The investigation of the microwave-induced drying to uncover the mechanism has great meaning for its development and usage. The experiments indicated that temperature was the decisive factor affecting the drying rate. The microwave-induced sludge reached the highest drying rate at the moisture rate of 40%, with a 20% grade promotion compared with that of the original one. The molecular fracture caused by microwave radiation had obviously accelerated the drying process and the drying rate was rising in proportion to the microwave radiation dose. The diffusion coefficient of microwave-induced sludge was obviously enlarged more than 2 times grade. In this research, model Weibull proved to fit the experiment of thin-layer drying for municipal sludge best compared with the other ones.


2012 ◽  
Vol 190-191 ◽  
pp. 575-580
Author(s):  
Han Min Xiao

In this paper, the drying experiments of paper sludge were performed at different drying conditions. The drying kinetics and phenomena of paper sludge were investigated. The effective diffusivity and the activation energy of the paper sludge during drying had been evaluated. At the same time, seven empirical models were used to model the experimental data, such as Newton, Page, Modified Page, Henderson and Pabis, Logarithmic, Two term, Two Term exponential et al. Three statistical parameters (The coefficient of determination (R2), root mean square error (RMSE) and the residual sum of square (RSS) ) were used to evaluate goodness of fit of the tested models.


Processes ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 21 ◽  
Author(s):  
Thi Van Linh Nguyen ◽  
My Duyen Nguyen ◽  
Duy Chinh Nguyen ◽  
Long Giang Bach ◽  
Tri Duc Lam

Lemongrass is a plant that contains aromatic compounds (myrcene and limonene), powerful deodorants, and antimicrobial compounds (citral and geraniol). Identifying a suitable drying model for the material is crucial for establishing an initial step for the development of dried products. Convection drying is a commonly used drying method that could extend the shelf life of the product. In this study, a suitable kinetic model for the drying process was determined by fitting moisture data corresponding to four different temperature levels: 50, 55, 60 and 65 °C. In addition, the effect of drying temperature on the moisture removal rate, the effective diffusion coefficient and activation energy were also estimated. The results showed that time for moisture removal increases proportionally with the air-drying temperature, and that the Weibull model is the most suitable model for describing the drying process. The effective diffusion coefficient ranges from 7.64 × 10−11 m2/s to 1.48 × 10−10 m2/s and the activation energy was 38.34 kJ/mol. The activation energy for lemongrass evaporation is relatively high, suggesting that more energy is needed to separate moisture from the material by drying.


Author(s):  
Joseph Oppong Akowuah ◽  
Ato Bart-Plange ◽  
Komla A. Dzisi

Performance of a tractor mounted solar-biomass hybrid dryer which utilise combined energy of solar and biomass was investigated. Drying behaviour of maize grains in the dryer was also investigated using 10 thin-layer mathematical models. The models were compared based on coefficient of determination (R<sup>2</sup>) and root mean square error (RMSE) values between experimental and predicted moisture ratios. Moisture content (MC) of grains in the dryer reduced from 19 ± 0.86% to 13 ± 0.4% (w.b.) in 5 h, compared to grains dried in open-sun which reached same MC in 15 hours. This resulted in average drying rate of 1.2 %·h<sup>–1</sup> compared to 0.4 %·h<sup>–1</sup> for grains dried in the open-sun leading to net savings in drying time of 67%. Overall mean temperature, 41.93 ± 2.7 °C in the dryer was 15.3 °C higher than the ambient temperature. Midilli Kucuk model was best to describe the thin-layer drying kinetics of maize in the dryer. It showed a good fit between the predicted and experimental data. The effective moisture diffusivity of grains dried in the dryer ranged between 1.45 × 10<sup>–11</sup> m<sup>2</sup>·s<sup>–1</sup> – 3.10 × 10<sup>–11</sup> m<sup>2</sup>·s<sup>–1</sup>. An activation energy of 96.83 kJ·mol<sup>–1</sup> was determined based on the Arrhenius-type equation.


Author(s):  
Samuel Enahoro Agarry

The objective of this study was to investigate the effect of pre-treatment and drying temperature on the drying kinetics and nutritional quality of tomato (Lycopersicon esculantum L.) under hot air drying. Tomato samples were blanched at 80oC and osmotically dehydrated using 20% w/w sodium chloride solutions at 30oC for 20 min. The blanch-osmotic pre-treated and untreated tomato slices were dried at temperature of 40, 50, 60, 70 and 80oC, respectively in a hot air-dryer. The results showed that blanch-osmotic pre-treatment offered a higher drying rate and lower or faster drying time than untreated condition. The tomato drying regime was characteristically in the constant and falling rate period. The tomato drying rate curve showed characteristics of porous hygroscopic solids. The optimum drying temperature for tomato was found to be 60oC. Four semi-empirical drying models of Newton, Page, Henderson and Pabis, and Logarithmic were fitted to the drying data using non-linear regression analysis. The most appropriate model was selected using the coefficient of determination (R2) and root mean square error (RMSE). The Page model has shown a better fit to the drying kinetics data of tomato in comparison with other tested models. Transport of moisture during drying was described by Fick’s diffusion model application and the effective moisture diffusivity (Deff) thus estimated. The Deff at 60oC was 4.43 × 10-11m2/s and 6.33 × 10-11m2/s for blanch-osmotic pre-treated and untreated tomato slices, respectively.


2019 ◽  
Vol 49 (1) ◽  
pp. 19-24
Author(s):  
E. K. BASAR ◽  
N. HEYBELI ◽  
M. Z. FIRAT ◽  
C. ERTEKIN*

In this paper, 105 different semitheoretical and empirical thin layer drying models were used for describing the drying process of the mint leaves. Comparisons of the overall goodness of fit were based on Coefficient of Determination (R2), Root Mean Square Error (RMSE), Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC). It was concluded that five parameter Cedergreen-Ritz-Streibig modified log-logistic functions with alpha equal to 0.25 (CRS5C) model describe the infrared drying process of the mint leaves. Furthermore, temperature effect was investigated by using reduction test. Finally, it was found that the effect is statistically significant and the model with separate trends fits these data better.


Sign in / Sign up

Export Citation Format

Share Document