Interply Behavior Exhibited in Compliant Filamentary Composite Laminates

1982 ◽  
Vol 55 (4) ◽  
pp. 1078-1094 ◽  
Author(s):  
J. L. Turner ◽  
J. L. Ford

Abstract Cord-rubber composite systems allow a visualization of interply shear strain effects because of the compliant nature of the matrix material. A technique termed the pin test was developed to aid this visualization of interply shear strain. The pin test performed on both flat pads and radial tires shows that interlaminar shear strain behavior in both types of specimens is similar, most of the shear strain being confined to a region approximately 10 interly rubber thicknesses from the edge. The observed shear strain is approximately an order of magnitude greater than the applied extensional strain. A simplified mathematical model, called the Kelsey strip, for describing such behavior for a two-ply (±θ) cord-rubber strip has been formulated and demonstrated to be qualitatively correct. Furthermore, this model is capable of predicting trends in both compliant and rigid matrix composites and allows for simplified idealizations. A finite-element code for dealing with such interply effects in a simple but efficient manner predicts qualitatively correct results.

2011 ◽  
Vol 23 (3) ◽  
pp. 269-278 ◽  
Author(s):  
Bin Zhu ◽  
Christopher D Rahn ◽  
Charles E Bakis

Fluidic flexible matrix composite (F2MC) tubes have been shown to provide actuation and stiffness change in applications that require isolated tubes or multiple tubes embedded in a soft matrix. Structural applications often require stiff and strong composites, however, so this article addresses the actuation performance of F2MC tubes embedded in structural media. Two analytical models are developed based on Lekhnitskii’s solutions for a homogeneous orthotropic cylinder with axial force and pressure loading. These unit cell models are cylindrical and bilayer with the inner layer being a thick-walled F2MC tube and the outer layer representing the surrounding rigid composite and are composed of either homogeneous epoxy or a second FMC layer made with stiffer matrix material. The models are validated using ABAQUS. Free strain and blocked force are calculated for a variety of unit cell designs. The analytical results show that actuation performance is generally reduced compared to that of an isolated F2MC tube due to the radial and longitudinal constraints imposed by the surrounding structural medium. The free strain is generally two orders of magnitude smaller for an F2MC tube in structural media, requiring higher actuation pressures for bilayer F2MC structures. The blocking force of F2MC in either epoxy or composite is roughly an order of magnitude smaller than that of an isolated F2MC tube. The analysis shows a great degree of tailorability in actuation properties, so that the F2MC tube can be designed to minimize these differences. Higher actuation performance is achieved, for example, with a thick-walled F2MC tube, as opposed to the thin wall that maximizes performance in an isolated F2MC tube.


1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
Lun X. He ◽  
David K. Hsu ◽  
John P. Basart

In continuous fiber reinforced metal matrix composites, the volume fraction of voids in the matrix material is an important parameter for material property characterization. In analyzing a cross-sectional micrograph of such a composite, the presence of fiber images and voids occurring on the perimeter of fibers complicates the determination of void content. This paper describes image processing steps using mathematical morphology for the extraction of void fraction in a composite.


2020 ◽  
Vol 4 (2) ◽  
pp. 115-126
Author(s):  
Anil K. Matta ◽  
Naga S. S. Koka ◽  
Sameer K. Devarakonda

Magnesium Metal Matrix Composites (Mg MMC) have been the focus of consideration by many researchers for the past few years. Many applications of Mg MMCs were evolved in less span of time in the automotive and aerospace sector to capture the benefit of high strength to weight ratio along with improved corrosion resistance. However, the performance of these materials in critical conditions is significantly influenced by several factors including the fabrication methods used for processing the composites. Most of the papers addressed all the manufacturing strategies of Mg MMC but no paper was recognized as a dedicated source for magnesium composites prepared through stir casting process. Since stir casting is the least expensive and most common process in the preparation of composites, this paper reviews particulate based Mg MMCs fabricated with stir casting technology. AZ91 series alloys are considered as the matrix material while the effect of different particle reinforcements, sizes , weight fractions on mechanical and tribological responses are elaborated in support with micro structural examinations. Technical difficulties and latest innovations happened during the last decade in making Mg MMCs as high performance material are also presented.


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4411-4426
Author(s):  
Roberta Cristina Silva Moreira ◽  
Oksana Kovalenko ◽  
Daniel Souza ◽  
Ruham Pablo Reis

In the search for high-performance parts and structures, especially for the aviation and aerospace industry, metal matrix composites appear with prominence. However, despite exhibiting high levels of mechanical properties and low densities, these materials are still very expensive, mainly due to complex production. Thus, this work aims to present and evaluate a novel way of manufacturing metal matrix composites, with relative low cost and complexity: by using low-energy fusion welding to deposit the matrix material on top of continuous metal wire reinforcement. For proof of concept, Al alloy was used as matrix material, a single Ti alloy wire as reinforcement, and gas metal arc welding CMT-Pulse® as the process for material deposition. The simplified Al–Ti composite was evaluated in terms of impact resistance and tensile strength and stiffness. Overall, the mechanical performance of the composite was around 23% higher than that of the matrix material itself (Al), this with only about 2% of reinforcement volume and just over 3% of increase in weight. Analyses of the Al–Ti composite fractures and cross-sections and of chemical composition and hardness of the matrix–reinforcement transition interface indicated the preservation (no melting) of the Ti wire and the existence of a fine contour of bonding between matrix and reinforcement. At the end, a brief discussion on the dynamics of the wire reinforcement preservation is carried out based on high-speed filming.


1989 ◽  
Vol 170 ◽  
Author(s):  
J. G. Williams ◽  
M. E. Donnellan ◽  
M. R. James ◽  
W. L. Morris

AbstractIn organic matrix composites the properties of the matrix in the vicinity of the reinforcing fiber are of interest [1]. It has been suggested that a volume of material surrounding the fiber is significantly different from the bulk matrix [2–6]. Recent work has indicated that the interphase layer may be softer than the normal matrix material [6]. For a model composite with a single fiber embedded in an epoxy/amine matrix this layer was observed to be about 500nm thick and the material had an average elastic modulus of about 1/4 of that of the normal matrix material. The objective of the present work is to observe the effect of fiber treatment on the elastic properties of the interphase.


Author(s):  
Michael Philen

Variable modulus fluidic flexible matrix composites (F2MC) are investigated for vibration isolation mounts. The fluidic flexible matrix composites are based upon flexible matrix composite tubes containing a high bulk modulus internal fluid. By tailoring the fibers (orientation, number of layers, material, etc.) and the choice of the matrix material, the F2MC tube can obtain significant changes in stiffness by simply opening or closing an inlet valve to the tubes. The objective in this research is to investigate the F2MC variable modulus system for semi-active vibration isolation. A nonlinear analytical model of an isolation mount based on the F2MC tube with a proportional valve is developed. Analysis results indicate that the F2MC based isolation mount is effective for reducing the transmission from a disturbance source to a mass. Simulation studies demonstrate that the resonant frequencies and the damping can be controlled through simple valve control, which can be effective for vibration isolation.


2009 ◽  
Vol 417-418 ◽  
pp. 549-552
Author(s):  
Burak Özkal ◽  
Tugba Uçar

Different amounts of fiber added samples were prepared by standard ceramic processing routes and sintered at different temperatures. Although powder packing characteristics of the matrix material were negatively affected with increasing fiber content; certain improvements were observed for the density, MOR and water absorption values both for green and sintered states. Fracture surfaces of the samples after three-point bending test were investigated via detailed SEM observations and phase analyses were performed by XRD measurements. It is found that phase transformation controlled fiber-matrix integration starts with increasing sintering temperature and degree of bonding between fiber/matrix interfaces can be arranged by selecting optimum sintering temperature. Aluminosilicate fiber addition was found efficient for improving mechanical properties of clay-kaolin matrix and the mechanism of the improvement can be grouped into two categories i.e. (1) brittle fiber – brittle matrix interactions via well known pulled-out, crack deflection and bridging mechanisms prior to fiber-matrix integration (2) further densification via phase transformation controlled fiber-matrix integration after high sintering temperatures.


2015 ◽  
Vol 813-814 ◽  
pp. 195-202 ◽  
Author(s):  
T. Lokesh ◽  
U.S. Mallikarjun

Abstract. In recent years, Aluminium alloy based metal matrix composites (MMC) are gaining wide spread acceptance in several aerospace and automobile applications. These composites possess excellent wear resistance in addition to other superior mechanical properties such as strength, modulus and hardness when compared with conventional alloys. The hybrid composites are new generation of composites containing more than one type, shape or sizes of reinforcements giving superior combined properties of reinforcements and the matrix. In the present work, Al6061 has been used as matrix material and the reinforcing materials selected were SiC and Graphite particulates of 10 to 30µm size. Composites Al6061-Gr (2- 8 wt. %), Al6061-SiC (2 -10wt. %) and Hybrid composites with Al6061 matrix alloy containing 3wt% graphite and varying composition of 2-10wt% SiCp were prepared by stir casting technique. The cast matrix alloy and its composites have been subjected to solutionizing treatment at a temperature of 530 ± 20C for 6 hours, followed by ageing at a temperature of 175 ± 20C for 6 hours. The mechanical properties of as cast and T6 heat treated composites have been evaluated as per ASTM standards and compared. Addition of Graphite particulates into the Al6061 matrix improved the strength and ductility of the composites. Significant improvement in tensile strength and hardness was noticed as the wt. % of SiCp increases in Al6061-SiC composites. Addition of Graphite into Al6061-SiC further improved the strength and ductility of hybrid composites. The heat treatment process had the profound effect in improving the mechanical properties of the studied composites. The microstructural studies revealed the uniform distribution of SiC and Gr particles in the matrix system.


2021 ◽  
pp. 096739112110284
Author(s):  
Abd Baghad ◽  
Khalil El Mabrouk ◽  
Sébastien Vaudreuil ◽  
Khalid Nouneh

The final mechanical properties of composite laminates are highly dependent on their curing cycles in the autoclave. During this cycle, the temperature, pressure, vacuum, and treatment time will influence the quality of manufactured parts. The void content is considered the most harmful defects in carbon/epoxy laminates since they weaken the matrix-dominated mechanical properties such as interlaminar shear and compressive strengths. In the present work, differential scanning calorimetry is used to characterize the influence of time/temperature on the behavior of the epoxy resin. Then, a series of [0/90/−45/+45]s laminates composites are autoclave-cured under various applied pressures to evaluate their impact on microstructure and mechanical properties. The interlaminar shear modulus, interlaminar shear strength, laminate compressive modulus, and laminate compressive strength at room and operating engine temperature were measured. The correlation between microstructure and mechanical properties was also studied. The mechanical properties of manufactured carbon/epoxy laminates are found to be dependent on pressure and microstructure. These results are explored to establish an optimal autoclave pressure route that would minimize porosity without counterbalancing mechanical properties.


2021 ◽  
Author(s):  
Luigi Sanguigno ◽  
Marcello Antonio Lepore ◽  
Angelo Rosario Maligno

The mechanical and morphological properties of the unidirectional metal matrix composite (MMC) in titanium alloy reinforced with continuous silicon carbide (SiC) fibres are investigated. The lay-up manufacturing process known as the Foil / Fibre (FF) lay-up was compared with the matrix-coated-fibre (CF) method which promises a better final shape of the reinforcing fibre net. Tensile tests were performed to measure mechanical performance of the manufactured MMCs both longitudinally and transversely respect to the direction of SiC fibres. Elastic behaviour of the investigated MMCs was assumed orthotropic and related to mechanical properties and spatial distribution of the MMC constituents: SiC fibres and Titanium (Ti) matrix. This was achieved using micromechanical modelling based on Finite Element (FE) calculations. FE micromechanical modelling was carried out on the Representative Elementary Volume (REV) of the MMC microstructure resolved by non-destructive analysis such as X-Ray tomography. The analysis carried out highlighted and justified mechanical performance difference between composite laminates containing the same amount of SiC reinforcement fibres for unit of volume but made following different manufacturing routes. To compute overall orthotropic behaviour of the MMC laminate, each constituent was assumed as an elastic isotropic heterogeneity during the averaging. This simplify assumption was validated by comparison with experimental data during the mechanical characterization of the investigated MMC composites.


Sign in / Sign up

Export Citation Format

Share Document