Effect of Fiber-Matrix Integration on the Fracture Behavior of Aluminosilicate Fiber Reinforced Clay-Kaolin Matrix Composites

2009 ◽  
Vol 417-418 ◽  
pp. 549-552
Author(s):  
Burak Özkal ◽  
Tugba Uçar

Different amounts of fiber added samples were prepared by standard ceramic processing routes and sintered at different temperatures. Although powder packing characteristics of the matrix material were negatively affected with increasing fiber content; certain improvements were observed for the density, MOR and water absorption values both for green and sintered states. Fracture surfaces of the samples after three-point bending test were investigated via detailed SEM observations and phase analyses were performed by XRD measurements. It is found that phase transformation controlled fiber-matrix integration starts with increasing sintering temperature and degree of bonding between fiber/matrix interfaces can be arranged by selecting optimum sintering temperature. Aluminosilicate fiber addition was found efficient for improving mechanical properties of clay-kaolin matrix and the mechanism of the improvement can be grouped into two categories i.e. (1) brittle fiber – brittle matrix interactions via well known pulled-out, crack deflection and bridging mechanisms prior to fiber-matrix integration (2) further densification via phase transformation controlled fiber-matrix integration after high sintering temperatures.

1982 ◽  
Vol 55 (4) ◽  
pp. 1078-1094 ◽  
Author(s):  
J. L. Turner ◽  
J. L. Ford

Abstract Cord-rubber composite systems allow a visualization of interply shear strain effects because of the compliant nature of the matrix material. A technique termed the pin test was developed to aid this visualization of interply shear strain. The pin test performed on both flat pads and radial tires shows that interlaminar shear strain behavior in both types of specimens is similar, most of the shear strain being confined to a region approximately 10 interly rubber thicknesses from the edge. The observed shear strain is approximately an order of magnitude greater than the applied extensional strain. A simplified mathematical model, called the Kelsey strip, for describing such behavior for a two-ply (±θ) cord-rubber strip has been formulated and demonstrated to be qualitatively correct. Furthermore, this model is capable of predicting trends in both compliant and rigid matrix composites and allows for simplified idealizations. A finite-element code for dealing with such interply effects in a simple but efficient manner predicts qualitatively correct results.


1994 ◽  
Vol 3 (2) ◽  
pp. 096369359400300
Author(s):  
Lun X. He ◽  
David K. Hsu ◽  
John P. Basart

In continuous fiber reinforced metal matrix composites, the volume fraction of voids in the matrix material is an important parameter for material property characterization. In analyzing a cross-sectional micrograph of such a composite, the presence of fiber images and voids occurring on the perimeter of fibers complicates the determination of void content. This paper describes image processing steps using mathematical morphology for the extraction of void fraction in a composite.


2010 ◽  
Vol 97-101 ◽  
pp. 1726-1729
Author(s):  
Xin Ying Teng ◽  
Deng Wei Zhang ◽  
Bo Li

Effects of aluminum content and sintering temperature on microstructures of TiCp/Al master alloy were investigated. The DSC results showed that reaction temperatures of the Al-Ti-C system were influenced by aluminum content. The average grain size of TiCp in the master alloy was 0.5~1μm with 40wt% Al content at 750°C sintering temperature. TiCp/AZ91 composites were fabricated through remelting TiCp/Al master alloy in magnesium alloy. Microstructural characterization of the TiCp/AZ91 composites showed relatively uniform distribution of TiC particulates in the matrix material and the hardness of the composites was improved significantly.


2020 ◽  
Vol 4 (2) ◽  
pp. 115-126
Author(s):  
Anil K. Matta ◽  
Naga S. S. Koka ◽  
Sameer K. Devarakonda

Magnesium Metal Matrix Composites (Mg MMC) have been the focus of consideration by many researchers for the past few years. Many applications of Mg MMCs were evolved in less span of time in the automotive and aerospace sector to capture the benefit of high strength to weight ratio along with improved corrosion resistance. However, the performance of these materials in critical conditions is significantly influenced by several factors including the fabrication methods used for processing the composites. Most of the papers addressed all the manufacturing strategies of Mg MMC but no paper was recognized as a dedicated source for magnesium composites prepared through stir casting process. Since stir casting is the least expensive and most common process in the preparation of composites, this paper reviews particulate based Mg MMCs fabricated with stir casting technology. AZ91 series alloys are considered as the matrix material while the effect of different particle reinforcements, sizes , weight fractions on mechanical and tribological responses are elaborated in support with micro structural examinations. Technical difficulties and latest innovations happened during the last decade in making Mg MMCs as high performance material are also presented.


2022 ◽  
pp. 103-117
Author(s):  
Sukanto ◽  
Wahyono Suprapto ◽  
Rudy Soenoko ◽  
Yudy Surya Irawan

This study aims to determine the effect of milling time and sintering temperature parameters on the alumina transformation phase in the manufacture of Aluminium Matrix Composites (AMCs) reinforced by 20 % silica sand tailings using powder metallurgy technology. The matrix and fillers use waste to make the composites more efficient, clean the environment, and increase waste utilization. The milling time applied to the Mechanical Alloying (MA) process was 0.5, 6, 24, 48, and 96 hours, with a ball parameter ratio of 15:1 and a rotation of 93 rpm. Furthermore, hot compaction was carried out using a 100 MPa two-way hydraulic compression machine at a temperature of 300 °C for 20 minutes. The temperature variables of the sintering parameter process were 550, 600 to 650 °C, with a holding time of 10 minutes. Characterization of materials carried out included testing particle size, porosity, X-Ray Diffraction (XRD), SEM-Image, and SEM-EDX. The particle measurement of mechanical alloying processed, using Particle Size Analyzer (PSA) instrument and based on XRD data using the Scherrer equation, showed a relatively similar trend, decreasing particle size occurs when milling time was increased 0.5 to 24 hours. However, when the milling time increases to 48 and 96 hours, the particle size tends to increase slightly, due to cold-weld and agglomeration when the Mechanical Alloying is processed. The impact is the occurrence of the matrix and filler particle pairs in the cold-weld state. So, the results of XRD and SEM-EDX characterization showed a second phase transformation to form alumina compounds at a relatively low sintering temperature of 600 °C after the mechanical alloying process was carried out with a milling time on least 24 hours


2019 ◽  
Vol 53 (28-30) ◽  
pp. 4411-4426
Author(s):  
Roberta Cristina Silva Moreira ◽  
Oksana Kovalenko ◽  
Daniel Souza ◽  
Ruham Pablo Reis

In the search for high-performance parts and structures, especially for the aviation and aerospace industry, metal matrix composites appear with prominence. However, despite exhibiting high levels of mechanical properties and low densities, these materials are still very expensive, mainly due to complex production. Thus, this work aims to present and evaluate a novel way of manufacturing metal matrix composites, with relative low cost and complexity: by using low-energy fusion welding to deposit the matrix material on top of continuous metal wire reinforcement. For proof of concept, Al alloy was used as matrix material, a single Ti alloy wire as reinforcement, and gas metal arc welding CMT-Pulse® as the process for material deposition. The simplified Al–Ti composite was evaluated in terms of impact resistance and tensile strength and stiffness. Overall, the mechanical performance of the composite was around 23% higher than that of the matrix material itself (Al), this with only about 2% of reinforcement volume and just over 3% of increase in weight. Analyses of the Al–Ti composite fractures and cross-sections and of chemical composition and hardness of the matrix–reinforcement transition interface indicated the preservation (no melting) of the Ti wire and the existence of a fine contour of bonding between matrix and reinforcement. At the end, a brief discussion on the dynamics of the wire reinforcement preservation is carried out based on high-speed filming.


Author(s):  
I. Corvin ◽  
H. Morrow ◽  
O. Johari ◽  
N. Parikh

A significant amount of research has been done in the past few years in the development of suitable composite materials in general and on boron fiber-aluminum matrix composites in particular. The mechanical properties of the composite depend on the structures and strengths of the matrix and fibers; on the amount, distribution, and surface characteristics of the fibers; and on the quality of the bond at the fiber-matrix interface. The results presented here illustrate the application of the SEM in studying the structure of the fiber-matrix interface and the fracture features of boron and aluminum.


2008 ◽  
Vol 368-372 ◽  
pp. 1844-1846 ◽  
Author(s):  
Xin Gui Zhou ◽  
Hai Jiao Yu ◽  
Bo Yun Huang ◽  
Jian Gao Yang ◽  
Ze Lan Huang

The influence of the fiber/matrix interlayers on the mechanical properties of T800-HB fiber (a kind of carbon fiber) (the fibrous is three-dimensional four-directional braided) reinforced silicon carbide (SiC) matrix composites has been evaluated in this paper. The composites were fabricated through PIP process, and SiC layers were deposited as fiber/matrix interlayers by the isothermal CVD process. Fiber/matrix debonding and relatively long fiber pullouts were observed on the fracture surfaces. The mechanical properties were investigated using three-point bending test and single-edge notched beam test. The T800-HB/SiC composites exhibited high mechanical strength, and the flexural strength and fracture toughness were 511.5MPa and 20.8MPa•m1/2, respectively.


1999 ◽  
Vol 586 ◽  
Author(s):  
Lawrence T. Drzal

ABSTRACTFiber-matrix adhesion is a variable to be optimized so that optimum composite mechanical properties can be achieved in polymer matrix composites. The contemporary view of adhesion rests on an “interphase” model in which not only the actual chemical and physical interactions between fiber and matrix are considered but also the structure and properties of both the fiber and the matrix in the region near the interface. The optimum design methodology starts with the specification of the fiber and matrix from a structural consideration. Once the constituents are selected, the focus is on the creation of a beneficial fiber-matrix “interphase”. This region where the fiber and matrix interact has to be designed for both “processing” and “performance”. Although no quantitative algorithm is available for interphase optimization, various thermodynamic principles coupled with experimental data can be used to qualitatively design the optimum interphase. Examples will be presented to illustrate how this interface can be engineered with surface treatments and sizings or coatings to insure thorough wetting, protection of the fiber, chemical bonding between fiber and matrix, toughness and desirable failure modes.


1989 ◽  
Vol 170 ◽  
Author(s):  
J. G. Williams ◽  
M. E. Donnellan ◽  
M. R. James ◽  
W. L. Morris

AbstractIn organic matrix composites the properties of the matrix in the vicinity of the reinforcing fiber are of interest [1]. It has been suggested that a volume of material surrounding the fiber is significantly different from the bulk matrix [2–6]. Recent work has indicated that the interphase layer may be softer than the normal matrix material [6]. For a model composite with a single fiber embedded in an epoxy/amine matrix this layer was observed to be about 500nm thick and the material had an average elastic modulus of about 1/4 of that of the normal matrix material. The objective of the present work is to observe the effect of fiber treatment on the elastic properties of the interphase.


Sign in / Sign up

Export Citation Format

Share Document