The Cross-Linking of Rubber by Pile Radiation

1955 ◽  
Vol 28 (1) ◽  
pp. 1-11
Author(s):  
Arthur Charlesby

Abstract The degree of cross-linking produced in a rubber by high-energy radiation is proportional to the radiation dose. Unit radiation, as defined in the text, links 1.1 per cent of the isoprene units. The distribution of molecular weight prior to cross-linking agrees with a Poisson distribution. Gel formation begins for γ=0.5. From the radiation dose required to initiate gel formation, the initial average molecular weight can be deduced. The increase of gel fraction with radiation dose follows the relationship deduced theoretically in the first part of the article. Measurement of gel fraction gives an alternative method of calculating the initial average molecular weight. Where some cross-linking is present in the rubber prior to cross-linking, this may be evaluated. In accordance with the theory presented in the article, the viscosity of the sol fraction rises initially, then decreases as the radiation dose increases. This provides a third method of measuring molecular weight, or of relating viscosity to molecular weight, which can be deduced from measurement of gel fraction. The swelling of very lightly cross-linked gel has been compared with the Flory-Huggins relationship, which is found to hold down to very lightly cross-linked gels for which the cross-linking index is only 0.2. To obtain this agreement, it is necessary to consider the swelling of the dry gel, rather than the whole specimen, and to ignore the cross-links required to form the gel itself.

1953 ◽  
Vol 26 (4) ◽  
pp. 741-758 ◽  
Author(s):  
H. E. Adams ◽  
B. L. Johnson

Abstract Recently, a method for measuring the average number of cross-links per chain of vulcanized polymer has been developed. It is possible to calculate the degree of cross-linking of the vulcanizate from its amount of swelling in a solvent such as benzene. This method was used by Flory to study the effect of primary molecular weight on the cross-linking of Butyl vulcanizates. An evaluation of the general validity of the method was ascertained by using quantitative cross-linking agents (diazodicarboxylates) to prepare vulcanizates of natural rubber and GR-S. Bardwell and Winkler have also used this technique to study the relationship between the degree of cross-linking and the force of retraction at 300 per cent elongation of GR-S latex vulcanized with potassium persulfate. The formation of cross-linking during the vulcanization by sulfur of several polymers has also been investigated. Gee has compared the formation of cross-linking in natural rubber vulcanizates with the amount of combined sulfur. Carbon-to-carbon cross-links were believed to be formed in a nonsulfur tetramethylthiuram disulfide (TMTD) cure. A similar study of Butyl rubber vulcanizates, cured with sulfur-TMTD, indicates that disulfide cross-links are formed. Scott and Magat have estimated that eight sulfur atoms are associated with each cross-link in Russian SK (sodium polybutadiene). This investigation was undertaken to extend Gee's study on the correlation of the cross-linking of natural-rubber vulcanizates with the amount of combined sulfur.


When subjected to high-energy radiation, polydimethyl siloxanes can be cross-linked to form insoluble amorphous structures which are transparent and have marked rubber-liko properties. Data are given on the relation between molecular weight and bulk viscosity, which is often used to characterize these polymers. The relationship between cross-linking density and radiation dose is deduced from the changes in both solubility and fusibility, and is confirmed by elastic measurements. Unit pile radiation is found to produce cross-linking in about 2*2 % of the monomer units. Details are given of the change in solubility and swelling with radiation dose and of the mechanism of cross-linking. The energy per cross-link is about 32 eV, and is independent of molecular weight. A brief comparison is made with cross-linking in hydrocarbon polymers.


In long-chain polymers an insoluble network or gel may be produced when a number of the separate molecules are linked together. A theoretical derivation is given of the relationship between the amount of gel formed and the degree of cross-linking, in terms of the initial molecular weight distribution. It is shown that whatever the initial molecular weight distribution, incipient gelling occurs when there is on the average one cross-linked monomer per weight average molecule. The shape of the gel-cross-linking curve depends on the ratio of z average, z +1, . . . average molecular weight to the weight average. From experimental values of the curve it becomes possible to determine many of the constants of the molecular weight distribution in the original polymer. Expressions are derived for the number average, weight average and z average of the polymer as a function of cross-linking prior to gel formation, as well as the number and weight averages of the sol fraction after gelation. The average molecular weight between cross-links in the gel is calculated. A number of other functions of the sol and gel fractions are also given.


Author(s):  
Burak Erman ◽  
James E. Mark

Until quite recently, there was relatively little reliable quantitative information on the relationship of stress to structure, primarily because of the uncontrolled manner in which elastomeric networks were generally prepared. Segments close together in space were linked irrespective of their locations along the chain trajectories, thus resulting in a highly random network structure in which the number and locations of the cross-links were essentially unknown. Such a structure is shown in figure 10.1. New synthetic techniques are now available, however, for the preparation of “model” polymer networks of known structure. More specifically, if networks are formed by end linking functionally terminated chains instead of haphazardly joining chain segments at random, then the nature of this very specific chemical reaction provides the desired structural information. Thus, the functionality of the cross links is the same as that of the end-linking agent, and the molecular weight Mc between cross-links and the molecular weight distribution are the same as those of the starting chains prior to their being end-linked. An example is the reaction shown in figure 10.2, in which hydroxyl-terminated chains of poly(dimethylsiloxane) (PDMS) are end-linked using tetraethyl orthosilicate. Characterizing the un-cross-linked chains with respect to molecular weight Mn and molecular weight distribution, and then carrying out the specified reaction to completion, gives elastomers in which the network chains have these characteristics; in particular, a molecular weight Mc between cross-links equal to Mn, a network chain-length distribution equal to that of the starting chains, and cross-links having the functionality of the end-linking agent. It is also possible to use chains having a known number of potential cross-linking sites placed as side chains along the polymer backbone, so long as their distribution is known as well. Because of their known structures, such model elastomers are now the preferred materials for the quantitative characterization of rubberlike elasticity. Such very specific cross-linking reactions have also been shown to be useful in the preparation of liquid-crystalline elastomers. Trifunctional and tetrafunctional PDMS networks prepared in this way have been used to test the molecular theories of rubber elasticity with regard to the increase in non-affineness of the network deformation with increasing elongation.


2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1992 ◽  
Author(s):  
Alexey Kondyurin ◽  
Anastasia Eliseeva ◽  
Alexander Svistkov

A model of rubber with a cross-linked rubber layer on a carbon black filler has been proposed. The cross-links are the result of free radical reactions generated by carbon atoms with unpaired electrons at the edge of graphitic sheets in a carbon black filler. The experimental study of the cross-linking reactions in polyisoprene was done on a flat carbonized surface after ion beam implantation. The cross-linking process in the polyisoprene macromolecules between two particles was simulated. The model with a cross-linked rubber layer on a carbon filler as a “glassy layer” explains the mechanical properties of the rubber materials.


1974 ◽  
Vol 47 (2) ◽  
pp. 342-356 ◽  
Author(s):  
V. A. Grechanovskii ◽  
I. Ya Poddubnyi ◽  
L. S. Ivanova

Abstract By changing the sol-gel ratio and the structure of the gel fraction it is possible to obtain various grades of synthetic cis-poly(isoprene) which show promise for different applications in the tire and mechanical rubber goods industries. The processability of commercial SKI-3 rubber (at a given average molecular weight of sol) depends mainly on the structure of the gel fraction. Thus, for example, inferior processing properties of rubber compounds is associated primarily with the presence of tight gel. The content and structure of the gel fraction also significantly affect plasto-elastic properties of raw rubbers, e.g. a low plasticity of raw rubbers owes to the increased content of gel fraction. The reduced green strength of compounds based on SKI—3 rubber is accounted for by its chemical structure. Conventional methods used to change the properties of rubbers (including the variation in molecular weight, molecular weight distribution, branching degree, and variation in the content and structure of gel fraction) cannot be considered to be adequate to tackle the problem of the green strength of SKI—3 black stocks. The way to solve the problem appears to be the introduction of functional groups into the polymer chain at the stage of synthesis or processing. These functional groups should be active as to the formation of labile rubber—carbon black—rubber and/or rubber—rubber bonds. High purity of microstructure is necessary but not sufficient for obtaining the required level of green strength of compounded SKI—3. The gel fractions of SKI—3 rubber yield vulcanizates with a more dense network than the corresponding sol vulcanizates. The temperature dependence of the tensile strength is controlled by the network density of vulcanizates from high cis-1,4 poly(isoprene).


1969 ◽  
Vol 39 (11) ◽  
pp. 1023-1030 ◽  
Author(s):  
Edith Honold ◽  
Stanley P. Rowland ◽  
James N. Grant

Differences in the ability of formaldehyde-crosslinked cotton fibers to swell are demonstrated in terms of alkali centrifuge values (ACV), i.e., the sorption of caustic solution of mercerizing strength. The wide range in ACV (310–50) emphasizes the extremes in sorptivity that can be achieved by differences in formaldehyde content and in method of introducing the cross links. In general, the ACV decreases with increasing formaldehyde content. However, ACV higher than that of the noncross-linked control cotton are reached for those samples in which a low percentage of formaldehyde was introduced into water-swollen fibers. Various hypotheses, based on ACV and related data, are presented pertaining to the alterations in fiber structure during the cross-linking processes and during the alkali swelling centrifuge test


Polymers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 584
Author(s):  
Zixin Yu ◽  
Jie Wang ◽  
Peihua Li ◽  
Dachuan Ding ◽  
Xuan Zheng ◽  
...  

A half-critical weight-average molecular weight ( M ¯ w ) (approximately 21,000 g mol−1), high-ion-content Zn-salt poly(styrene–ran–cinnamic-acid) (SCA–Zn) ionomer was successfully synthesized by styrene–cinnamic-acid (10.8 mol %) copolymerization followed by excess-ZnO melt neutralization. At 220 °C, the SCA–Zn’s viscosity was only approximately 1.5 magnitude orders higher than that of commercial polystyrene (PS) at 102 s−1, and the PS/SCA–Zn (5–40 wt %) melt blends showed apparently fine, two-phased morphologies with blurred interfaces, of which the 95/5 and 90/10 demonstrated Han plots suggesting their near miscibility. These indicate that any PS–(SCA–Zn) processability mismatch was minimized by the SCA–Zn’s half-critical M ¯ w despite its dense ionic cross-links. Meanwhile, the SCA–Zn’s Vicat softening temperature (VST) was maximized by its cross-linking toward 153.1 °C, from that (97.7 °C) of PS, based on its half-critical M ¯ w at which the ultimate glass-transition temperature was approximated. Below approximately 110 °C, the PS/SCA–Zn (0–20 wt %) were seemingly miscible when their VST increased linearly yet slightly with the SCA–Zn fraction due to the dissolution of the SCA–Zn’s cross-links. Nevertheless, the 60/40 blend’s VST significantly diverged positively from the linearity until 111.1 °C, revealing its phase-separated morphology that effectively enhanced the heat resistance by the highly cross-linked SCA–Zn. This work proposes a methodology of improving PS heat resistance by melt blending with its half-critical M ¯ w , high-ion-content ionomer.


Sign in / Sign up

Export Citation Format

Share Document