Sorption of Caustic Solution by Formaldehyde-Crosslinked Cottons

1969 ◽  
Vol 39 (11) ◽  
pp. 1023-1030 ◽  
Author(s):  
Edith Honold ◽  
Stanley P. Rowland ◽  
James N. Grant

Differences in the ability of formaldehyde-crosslinked cotton fibers to swell are demonstrated in terms of alkali centrifuge values (ACV), i.e., the sorption of caustic solution of mercerizing strength. The wide range in ACV (310–50) emphasizes the extremes in sorptivity that can be achieved by differences in formaldehyde content and in method of introducing the cross links. In general, the ACV decreases with increasing formaldehyde content. However, ACV higher than that of the noncross-linked control cotton are reached for those samples in which a low percentage of formaldehyde was introduced into water-swollen fibers. Various hypotheses, based on ACV and related data, are presented pertaining to the alterations in fiber structure during the cross-linking processes and during the alkali swelling centrifuge test

2016 ◽  
Vol 89 (4) ◽  
pp. 671-688 ◽  
Author(s):  
M. A. L. Verbruggen ◽  
L. van der Does ◽  
W. K. Dierkes ◽  
J. W. M. Noordermeer

ABSTRACT The theoretical model developed by Charlesby to quantify the balance between cross-links creation of polymers and chain scission during radiation cross-linking and further modifications by Horikx to describe network breakdown from aging were merged to characterize the balance of both types of scission on the development of the sol content during de-vulcanization of rubber networks. There are, however, disturbing factors in these theoretical considerations vis-à-vis practical reality. Sulfur- and peroxide-cured NR and EPDM vulcanizates were de-vulcanized under conditions of selective cross-link and random main-chain scissions. Cross-link scission was obtained using thiol-amine reagents for selective cleavage of sulfur cross-links. Random main-chain scission was achieved by heating peroxide vulcanizates of NR with diphenyldisulfide, a method commonly employed for NR reclaiming. An important factor in the analyses of these experiments is the cross-linking index. Its value must be calculated using the sol fraction of the cross-linked network before de-vulcanization to obtain reliable results. The values for the cross-linking index calculated with sol-gel data before de-vulcanization appear to fit the experimentally determined modes of network scission during de-vulcanization very well. This study confirms that the treatment of de-vulcanization data with the merged Charlesby and Horikx models can be used satisfactorily to characterize the de-vulcanization of NR and EPDM vulcanizates.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1992 ◽  
Author(s):  
Alexey Kondyurin ◽  
Anastasia Eliseeva ◽  
Alexander Svistkov

A model of rubber with a cross-linked rubber layer on a carbon black filler has been proposed. The cross-links are the result of free radical reactions generated by carbon atoms with unpaired electrons at the edge of graphitic sheets in a carbon black filler. The experimental study of the cross-linking reactions in polyisoprene was done on a flat carbonized surface after ion beam implantation. The cross-linking process in the polyisoprene macromolecules between two particles was simulated. The model with a cross-linked rubber layer on a carbon filler as a “glassy layer” explains the mechanical properties of the rubber materials.


1978 ◽  
Vol 175 (3) ◽  
pp. 1023-1032 ◽  
Author(s):  
P Knight ◽  
G Offer

Covalent cross-links can be inserted between the subunits of F-actin by using p-NN′-phenylenebismaleimide. Cross-linking reaches its maximum value when one molecule of reagent has reacted with each actin subunit. p-NN′-Phenylenebismaleimide reacts initially with a cysteine residue on one subunit, the slower cross-linking reaction involving a lysine residue on a neighbouring subunit. Hydrolysis of the actin-bound reagent limits the extent of cross-linking. Quantitative analysis of the amounts of cross-linked oligomers seen on polyacrylamide gels containing sodium dodecyl sulphate suggests that neither the binding of the reagent to actin nor the formation of cross-links introduces strain into the structure. The cross-links do not join together different F-actin filaments, and evidence is presented that suggests that the cross-links join subunits of the same long-pitched helix.


1997 ◽  
Vol 322 (2) ◽  
pp. 535-542 ◽  
Author(s):  
Lynda KNOTT ◽  
John F. TARLTON ◽  
Allen J. BAILEY

With age, the proximal sections of turkey leg tendons become calcified, and this phenomenon has led to their use as a model for collagen mineralization. Mineralizing turkey leg tendon was used in this study to characterize further the composition and cross-linking of collagen in calcified tissues. The cross-link profiles of mineralizing collagen are significantly different from those of other collagenous matrices with characteristically low amounts of hydroxylysyl-pyridinoline and the presence of lysyl-pyridinoline and pyrrolic cross-links. However, the presence of the immature cross-link precursors previously reported in calcifying tissues was not supported in the present study, and was found to be due to the decalcification procedure using EDTA. Analysis of tendons from young birds demonstrated differences in the cross-link profile which indicated a higher level of hydroxylation of specific triple-helical lysines involved in cross-linking of the proximal tendon. This may be related to later calcification, suggesting that this part of the tendon is predestined to be calcified. The minimal changes in lysyl hydroxylation in both regions of the tendon with age were in contrast with the large changes in the cross-link profile, indicating differential hydroxylation of the helical and telopeptide lysine residues. Changes with age in the collagen matrix, its turnover and thermal properties in both the proximal and distal sections of the tendon clearly demonstrate that a new and modified matrix is formed throughout the tendon, and that a different type of matrix is formed at each site.


2018 ◽  
Author(s):  
Christian E. Stieger ◽  
Philipp Doppler ◽  
Karl Mechtler

ABSTRACTCross-linking mass spectrometry (XLMS) is becoming increasingly popular, and current advances are widening the applicability of the technique so that it can be utilized by non-specialist laboratories. Specifically, the use of novel mass spectrometry-cleavable (MS-cleavable) reagents dramatically reduces complexity of the data by providing i) characteristic reporter ions and ii) the mass of the individual peptides, rather than that of the cross-linked moiety. However, optimum acquisition strategies to obtain the best quality data for such cross-linkers with higher energy C-trap dissociation (HCD) alone is yet to be achieved. Therefore, we have carefully investigated and optimized MS parameters to facilitate the identification of disuccinimidyl sulfoxide (DSSO)- based cross-links on HCD-equipped mass spectrometers. From the comparison of 9 different fragmentation energies we chose several stepped-HCD fragmentation methods that were evaluated on a variety of cross-linked proteins. The optimal stepped-HCD-method was then directly compared with previously described methods using an Orbitrap Fusion™ Lumos™ TribridTM instrument using a high-complexity sample. The final results indicate that our stepped-HCD method is able to identify more cross-links than other methods, mitigating the need for multistage MS (MSn) enabled instrumentation and alternative dissociation techniques.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3196-3196
Author(s):  
Pan Zhang ◽  
Deepa Sridharan ◽  
Michael Acosta ◽  
Muriel Lambert

Abstract Abstract 3196 Poster Board III-133 The hereditary bone marrow failure disorder, Fanconi anemia (FA), is characterized by a markedly increased incidence of acute myelogenous leukemia, diverse congenital abnormalities and a defect in ability to repair DNA interstrand cross-links. We have previously shown that in FA cells there is a deficiency in the structural protein nonerythroid a spectrin (aSpII), which is involved in repair of DNA interstrand cross-links and binds to cross-linked DNA. aSpII co-localizes in nuclear foci with FANCA and the cross-link repair protein, XPF, after normal human cells are damaged with a DNA interstrand cross-linking agent. One of the FA proteins which is thought to play an important role in the repair of DNA interstrand cross-links is FANCD2, which is known to form nuclear foci after cross-link damage. The present study was undertaken in order to get a better understanding of the relationship between aSpII and FANCD2, whether they interact with each other during the DNA repair process and co-localize in damage-induced nuclear foci. Immunofluorescence microscopy was carried out to determine whether these proteins co-localized in nuclear foci after cells were damaged with a DNA interstrand cross-linking agent, 8-methylpsoralen plus UVA light (8-MOP) or mitomycin C (MMC). Time course measurements showed that FANCD2 foci were first visible at 2 hours after damage and increased up to 16 hours and were still present at 72 hours after damage. This time course of foci formation correlated with levels of monoubiquitination of FANCD2. Measurement of gH2AX foci formation showed that the time course of foci formation was similar to that of FANCD2 measured up to 72 hours post damage. In contrast, aSpII foci were first visible between 8-10 hours after damage. The number of these foci peaked at 16 hours and by 24 hours foci were no longer observed. Co-localization studies showed that there was little co-localization of the FANCD2 and aSpII foci over this time course. This indicates that these two proteins may be involved in different steps in the DNA interstrand cross-link repair process. Based on models that have been proposed for the role of FANCD2 in the repair of DNA interstrand cross-links, we propose that, after DNA damage, FANCD2 localizes at DNA replication forks stalled at sites of interstrand cross-links and aids in the assembly of proteins at this site. This is followed by localization of aSpII and XPF and other proteins involved in the initial incision steps in DNA interstrand cross-link repair where they play a role in the unhooking of the cross-link. FANCD2 is then involved in subsequent steps in the repair process, which involve homologous recombination. Thus two proteins, FANCD2 and aSpII, both of which have been shown to be critical for the DNA interstrand cross-link repair process may be involved in different or distinct steps in this repair process. Deficiencies in these proteins would impact on DNA interstrand cross-link repair and, as we have shown for aIISp, would have an adverse effect on the genomic stability of FA cells. . Disclosures No relevant conflicts of interest to declare.


Author(s):  
Tom McLeish

‘Liveliness’ studies the new biologically inspired field of active soft matter. Almost any type of soft matter possesses an active form. Using myosin corresponds to making the cross-links of a polymer gel active. However, polymerization itself can be actively driven, as well as the cross-linking between polymers. Bacteria are, within this perspective, an active form of colloid—nanoparticles that can swim. As their shape becomes highly anisotropic, they generate the notion of ‘active liquid crystals’.


2018 ◽  
Vol 8 (1) ◽  
pp. 35
Author(s):  
Takako Igarashi ◽  
Koichi Nakamura

The mechanism of softening effect for fabric softeners has been explained as lowering of friction between the fibers. This explanation, however, has not been verified. The trend date of B-value of KES-FB2 and the result of perfect drying cotton threads indicate that the increase of hardness of cotton threads after the process of wetting by water and drying is caused by the cross-linking by the bound water between the cotton fibers. Thus, the softening effect of fabric softeners can mainly be discussed as the prevention of the formation of this cross-linkage.


2021 ◽  
Author(s):  
Moriya Slavin ◽  
Joanna Zamel ◽  
Keren Zohar ◽  
Siona Eliyahu ◽  
Merav Braitbard ◽  
...  

AbstractAtomic structures of several proteins from the coronavirus family are still partial or unavailable. A possible reason for this gap is the instability of these proteins outside of the cellular context, thereby prompting the use of in-cell approaches. In situ cross-linking and mass spectrometry (in situ CLMS) can provide information on the structures of such proteins as they occur in the intact cell. Here, we applied targeted in situ CLMS to structurally probe Nsp1, Nsp2, and Nucleocapsid (N) proteins from SARS-CoV-2, and obtained cross-link sets with an average density of one cross-link per twenty residues. We then employed integrative modeling that computationally combined the cross-linking data with domain structures to determine full-length atomic models. For the Nsp2, the cross-links report on a complex topology with long-range interactions. Integrative modeling with structural prediction of individual domains by the AlphaFold2 system allowed us to generate a single consistent all-atom model of the full-length Nsp2. The model reveals three putative metal binding sites, and suggests a role for Nsp2 in zinc regulation within the replication-transcription complex. For the N protein, we identified multiple intra- and inter-domain cross-links. Our integrative model of the N dimer demonstrates that it can accommodate three single RNA strands simultaneously, both stereochemically and electrostatically. For the Nsp1, cross-links with the 40S ribosome were highly consistent with recent cryo-EM structures. These results highlight the importance of cellular context for the structural probing of recalcitrant proteins and demonstrate the effectiveness of targeted in situ CLMS and integrative modeling.


2021 ◽  
Vol 885 ◽  
pp. 39-45
Author(s):  
Magdalena Beata Łabowska ◽  
Agnieszka Maria Jankowska ◽  
Izabela Michalak ◽  
Jerzy Detyna

Hydrogels are cross-linked polymeric structures, which consist of up to approximately 90% water, the remainder is polymer chain. Retention of large volumes of water in the intermolecular space is related to the presence of hydrophilic functional groups in the network. The unique hydrogels properties, such as porosity, and biological and mechanical properties, make them suitable for a wide range of applications, especially in the medical sector. Furthermore, ease of modification and good printability are expected in 3D bioprinting technologies. Nevertheless, to maintain their structure and softness, hydrogels must be stored in suitable conditions to prevent water vaporization. The water removal from the hydrogel network results in weight reduction, structural and volumetric changes. It is a considerable challenge for the printouts manufactured by 3D bioprinting technology, where hydrogel products are exposed to drying during the production process, which may affect their shape change and shrinkage. The paper presents a crosslinking process of a hydrogel-based on sodium alginate and the shrinkage of dried hydrogels depending on the crosslinking procedure. An investigation focused on the alginate hydrogel water content, as well as shrinkage of alginate hydrogel degree depending on the concentration of the cross-linking (CaCl2) solution and the duration of the process. For longer cross-linking time or using higher cross-linking agent concentration, the cross-linking was more efficient. However, it is necessary to optimize the parameters for the bioprinting process.


Sign in / Sign up

Export Citation Format

Share Document