Rubber Elasticity and Gas Elasticity

1939 ◽  
Vol 12 (2) ◽  
pp. 124-129
Author(s):  
H. Mark

Abstract All substances which are composed of long mobile chains show one peculiar property, highly reversible elasticity. Even though the range of temperature of this property may be notably variable (in the case of polyvinyl alcohol and rubber at about room temperature, in the case of polystyrene, sulfur, or Thiokol only at a higher temperature) still it is to be noted that for rubber-like elasticity the presence of long flexible chains is an indispensable factor. Thus, typical rubber elasticity occurs in polyvinyl alcohol (Vinarol), polybutadiene (Buna), polymethyl-butadiene (methyl rubber), polyacrylic ester and also in its mixed polymerisate with vinyl chloride. This type of elasticity occurs also in sinew fibrin and muscle fibrin, in polychlorobutadiene (Neoprene, Sovprene), in polyethylene sulfide (Thiokol, Baerite), polyphosphornitrile chloride and finally in vulcanized oils (factice) and also in elastic sulfur. In the cases so far examined (natural rubber, Buna, methyl rubber), it has been found that the coefficient of elasticity increases proportionally to the absolute temperature, and that during the stretching heat is evolved. This behavior is contrary to that of normal elastic materials, steel, quartz, glass, etc. It is striking that the substances which have this property of highly reversible (rubber-like) stretching are widely different chemically. This tempts one to ascribe that property to the similarity of their construction. For example, all the substances mentioned consist of long chain-molecules, which display a high degree of internal mobility. The number of members in these chains varies from 102 to 104 and their mobility is due to the kind of linkage between the members, mostly simple C—C bonds.

2003 ◽  
Vol 76 (4) ◽  
pp. 876-891 ◽  
Author(s):  
R. N. Datta ◽  
A. G. Talma ◽  
S. Datta ◽  
P. G. J. Nieuwenhuis ◽  
W. J. Nijenhuis ◽  
...  

Abstract The use of thiurams such as Tetramethyl thiuram disulfide (TMTD) or Tetrabenzyl thiuram disulfide (TBzTD) has been explored to achieve higher cure efficiency. The studies suggest that a clear difference exists between the effect of TMTD versus TBzTD. TMTD reacts with Bis (triethoxysilylpropyl) tetrasulfide (TESPT) and this reaction can take place even at room temperature. On the other hand, the reaction of TBzTD with TESPT is slow and takes place only at higher temperature. High Performance Liquid Chromatography (HPLC) with mass (MS) detection, Nuclear Magnetic Resonance Spectroscopy (NMR) and other analytical tools have been used to understand the differences between the reaction of TMTD and TESPT versus TBzTD and TESPT. The reaction products originating from these reactions are also identified. These studies indicate that unlike TMTD, TBzTD improves the cure efficiency allowing faster cure without significant effect on processing characteristics as well as dynamic properties. The loading of TESPT is reduced in a typical Green tire compound and the negative effect on viscosity is repaired by addition of anhydrides, such as succinic anhydride, maleic anhydride, etc.


2018 ◽  
Vol 281 ◽  
pp. 182-188
Author(s):  
Yong Sing Ng ◽  
Yun Ming Liew ◽  
Cheng Yong Heah ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamarudin Hussin

The present work investigates the effect of alumina addition on the thermal resistance of fly ash geopolymers. Fly ash geopolymers were synthesised by mixing fly ash with activator solution (A mixture of 12M sodium hydroxide and sodium silicate) at fly ash/activator ratio of 2.5 and sodium silicate/sodium hydroxide ratio of 2.5. The alumina (0, 2 and 4 wt %) was added as an additive. The geopolymers were cured at room temperature for 24 hours and 60°C for another 24 hours. After 28 days, the geopolymers was heated to elevated temperature (200 - 1000°C). For unexposed geopolymers, the addition of 2 wt % of alumina increased the compressive strength of fly ash geopolymers while the strength decreased when the content increased to 4 wt.%. The temperature-exposed geopolymers showed enhancement of strength at 200°C regardless of the alumina content. The strength reduced at higher temperature exposure (> 200°C). Despite the strength degradation at elevated temperature, the strength attained was relatively high in the range of 13 - 45 MPa up to 1000°C which adequately for application as structural materials.


2005 ◽  
Vol 488-489 ◽  
pp. 287-290 ◽  
Author(s):  
Tadayoshi Tsukeda ◽  
Ken Saito ◽  
Mayumi Suzuki ◽  
Junichi Koike ◽  
Kouichi Maruyama

We compared the newly developed heat resistant magnesium alloy with conventional ones by Thixomolding® and aluminum alloy by die casting. Tensile properties at elevated temperatures of AXEJ6310 were equal to those of ADC12. In particular, elongation tendency of AXEJ6310 at higher temperature was better than those of the other alloys. Creep resistance of AXEJ6310 was larger than that of AE42 by almost 3 orders and smaller than that of ADC12 by almost 2 orders of magnitude. Fatigue limits at room temperature and 423K of AXEJ6310 was superior among conventional magnesium alloys.


1951 ◽  
Vol 24 (4) ◽  
pp. 777-786
Author(s):  
E. H. Farmer ◽  
C. G. Moore

Abstract The high degree of dehydrogenation effected by tert.-butoxy radicals at the α-methylenic groups of olefins enables these radicals to be used for the carbon-to-carbon cross-linking of unsaturated carbon chains, and especially of the polyisoprenic chains of natural rubber. Such cross-linking amounts to a vulcanization process in which the connecting links between chain molecules are just C—C bonds, which may be expected to have appropriate attributes. An examination has first been made of the cross-linking produced by tert.- butoxy radicals (from di-tert.-butyl peroxide) at 140° between the short iso-prenic chains in 1-methylcyclohexene, 4-methylhept-3-ene, 2,6-dimethylocta-2, 6-diene, and digeranyl. Cross-linking proceeds efficiently in each case, and the points of union in these isoprene units which become directly joined are not confined to original α-methylenic carbon atoms. Where the reagent radicals are in considerable deficit, e.g., one per two or three of the isoprene units present, those olefin molecules which are attacked become linked together mostly by single unions to form aggregates containing two, three or four molecules; but in the tetraisoprenic olefins the extent to which more than one union is formed between some of the directly linked molecules becomes appreciable. In natural rubber, cross-linking occurs smoothly and to nearly the full extent corresponding to the (in practice restricted) proportion of peroxidic reagent employed. Good vulcanizates can be so obtained in which the tensile stength is found to increase towards a maximum and then to decline rapidly as the degree of cross-linking steadily increases. Thus to obtain vulcanizates of the optimum physical characteristics, the degree of cross-linking must be suitably chosen. The role of the peroxidic reagent is almost entirely non-additive and non-degradative.


Author(s):  
Burak Erman ◽  
James E. Mark

The classical theories of rubber elasticity are based on the Gaussian chain model. The only molecular parameter that enters these theories is the mean-square end-to-end separation of the chains constituting the network. However, there are various areas of interest that require characterization of molecular quantities beyond the Gaussian description. Examples are segmental orientation, birefringence, rotational isomerization, and finite extensibility, and we will address these properties in the following chapters. One often needs a more realistic distribution function for the end-to-end vector, as well as for averages of the products of several vectorial quantities, as will be evident in these chapters. The foundations for such characterizations, and several examples of their applications, are given in this chapter. Several aspects of rubber elasticity (such as the dependence of the elastic free energy on network topology, number of effective junctions, and contributions from entanglements) are successfully explained by theories based on the freely jointed chain and the Gaussian approximation. Details of the real chemical structure are not required at the length scales describing these phenomena. On the other hand, studies of birefringence, thermoelasticity, rotational isomerization upon stretching, strain dichroism, local segmental orientation and mobility, and characterization of networks with short chains require the use of more realistic network chain models. In this section, properties of rotational isomeric state models for the chains are discussed. The notation is based largely on the Flory book, Statistical Mechanics of Chain Molecules. More recent information is readily found in the literature. Due to the simplicity of its structure, a polyethylene-like chain serves as a convenient model for discussing the statistical properties of real chains. This simplicity can be seen in figure 8.1, which shows the planar form of a small portion of a polyethylene chain. Bond lengths and bond angles may be regarded as fixed in the study of rubber elasticity because their rapid fluctuations are usually in the range of only ±0.05 A and ±5°, respectively. The chain changes its configuration only through torsional rotations about the backbone bonds, shown, for example, by the angle for the ith bond in figure 8.1.


2020 ◽  
Vol 117 (21) ◽  
pp. 11299-11305 ◽  
Author(s):  
Hao Wang ◽  
Hanchao Liu ◽  
Zhenxing Cao ◽  
Weihang Li ◽  
Xin Huang ◽  
...  

Glassy polymers are extremely difficult to self-heal below their glass transition temperature (Tg) due to the frozen molecules. Here, we fabricate a series of randomly hyperbranched polymers (RHP) with high density of multiple hydrogen bonds, which showTgup to 49 °C and storage modulus up to 2.7 GPa. We reveal that the hyperbranched structure not only allows the external branch units and terminals of the molecules to have a high degree of mobility in the glassy state, but also leads to the coexistence of “free” and associated complementary moieties of hydrogen bonds. The free complementary moieties can exchange with the associated hydrogen bonds, enabling network reconfiguration in the glassy polymer. As a result, the RHP shows amazing instantaneous self-healing with recovered tensile strength up to 5.5 MPa within 1 min, and the self-healing efficiency increases with contacting time at room temperature without the intervention of external stimuli.


2006 ◽  
Vol 21 (7) ◽  
pp. 1798-1806 ◽  
Author(s):  
Megumi Mizuno ◽  
Masahide Takahashi ◽  
Toshinobu Yoko

Tin(II) organosilicophosphate glasses were prepared by nonaqueous acid–base reactions using orthophosphoric acid, dimethyldichlorosilane, and tin(II)chloride as the starting materials. The structure of the methylsiloxane-phosphate copolymer (methylsilicophosphate) and tin(II) methylsilicophosphate glasses was mainly investigated by the 31P nuclear magnetic resonance technique. A chain structure composed of the –(P–O–Si–O)m– silicophosphate bonds was found as the main structural unit in the methylsilicophosphate prepared by mixing orthophosphoric acid and dimethyldichlorosilane at room temperature. Tin(II) methylsilicophosphate glasses could be prepared by introducing SnCl2 as a cross-linking agent of silicophosphate chains. By increasing the reaction temperature, it was possible to promote the reaction and then to increase the network dimensions of the resultant tin(II) methylsilicophosphate glasses. It was found that the glasses with a high degree of condensation tend to have a better water durability in a humid atmosphere.


2005 ◽  
Vol 892 ◽  
Author(s):  
Katharina Lorenz ◽  
E. Nogales ◽  
R. Nédélec ◽  
J. Penner ◽  
R. Vianden ◽  
...  

AbstractGaN films were implanted with Er and Eu ions and rapid thermal annealing was performed at 1000, 1100 and 1200 °C in vacuum, in flowing nitrogen gas or a mixture of NH3 and N2. Rutherford backscattering spectrometry in the channeling mode was used to study the evolution of damage introduction and recovery in the Ga sublattice and to monitor the rare earth profiles after annealing. The surface morphology of the samples was analyzed by scanning electron microscopy and the optical properties by room temperature cathodoluminescence (CL). Samples annealed in vacuum and N2 already show the first signs of surface dissociation at 1000 °C. At higher temperature, Ga droplets form at the surface. However, samples annealed in NH3 + N2 exhibit a very good recovery of the lattice along with a smooth surface. These samples also show the strongest CL intensity for the rare earth related emissions in the green (for Er) and red (for Eu). After annealing at 1200 °C in NH3+N2 the Eu implanted sample reveals the channeling qualities of an unimplanted sample and a strong increase of CL intensity is observed.


1967 ◽  
Vol 21 (3) ◽  
pp. 599-608 ◽  
Author(s):  
J. W. Czerkawski

1. The compositions of the fatty acids in ryegrass were determined in fresh samples, and in samples dried at room temperature for 26 h, at 50° and for 18 h or at 100° for 12 h. The drying of grass resulted in a small increase in palmitic acid and a decrease in linolenic acid in the total fatty acids.2. Samples of grass dried at 50° and 100° were stored at three relative humidities (rh < 3%, 47% and 80%) for 13 months.3. There were marked changes in the samples stored at 80% rh, with an onset of mould growth and a loss of dry matter. The samples stored at lower humidities had no mould.4. There were two types of change in the fatty acids during storage. The deterioration brought about and mould was accompanied by a decrease in the concentration of linolenic acid and an increase in the concentrations of oleic and linoleic acids. The other type of change observed at the lower humidities resulted in a decrease in the content of linolenic and an increase in the content of palmitic, and did not affect the amounts of oleic and linoleic cells.5. There was little difference between the changes that occurred in the composition of the total fatty acids of the grass dried at 50° and of that dried at 100°. The changes that were at all significant appeared to occur less rapidly, particularly in the early months of storage, in the grass dried at the higher temperature for the shorter time.


Sign in / Sign up

Export Citation Format

Share Document