Effect of Certain Crystalline Substances on Physical Properties of Elastomers I. Stress-Strain behavior

1966 ◽  
Vol 39 (4) ◽  
pp. 1041-1052 ◽  
Author(s):  
Frederic J. Linnig ◽  
Edwin J. Parks ◽  
Robert D. Stiehler

Abstract Crystalline organic compounds containing a β-naphthyl group cause pronounced stiffening of rubber vulcanizates under certain conditions. When these materials are removed by extraction, the reinforcing effect vanishes. Reversibility of this effect indicates that the forces involved are not those associated with primary bonds. Reinforcement by at least one of these materials, PBNA, is obtained with vulcanizates made from various elastomers and vulcanizing agents, and is essentially independent of the state of cure. In some instances about five per cent of PBNA, the most effective of these, produces the same stiffness on first extension as 40 phr carbon black. Any PBNA dissolved in the rubber has no effect on stiffness. Thus, less than three per cent crystalline PBNA may produce an isotropic Young's modulus of about 20 kg/cm2 at room temperature. At higher concentrations of PBNA, strain continues to decrease but hardness does not change proportionally. The temperature coefficient of Young's modulus for PBNA reinforced rubber is negative, like that for vulcanizates containing carbon black. However, the increased solubility of PBNA with rising temperature makes quantitative determination of the temperature coefficient difficult. The PBNA-rubber structure is partly destroyed by repeated extensions to twice the original length. However after 5 extensions a substantial enhancement of modulus remains. Addition of PBNA to a rubber vulcanizate does not affect significantly the glass transition temperature. Though the reversible nature of reinforcement with PBNA strongly suggests a physical mechanism, the stiffening cannot be explained by existing theories of physical reinforcement.

2018 ◽  
Vol 7 (2.23) ◽  
pp. 99 ◽  
Author(s):  
M A. Othuman Mydin ◽  
N Mohamad ◽  
I Johari ◽  
A A. Abdul Samad

This paper focuses on laboratory investigation to scrutinize and portray the Young’s modulus of cellular mortar exposed to high temperatures. Two densities of cellular mortar of 600 and 900 kg/m3 density were cast and tested under axial compression and 3-point bending. The tests were performed at room temperature, 105°C, 205°C, 305°C, 405°C, 505°C, and 605°C. The results of this study consistently indicated that the loss in toughness for cement based material like cellular mortar exposed to high temperatures happens principally after 105°C, irrespective of density of cellular mortar. This specifies that the principal contrivance instigating stiffness deprivation is micro cracking in the cement matrix, which happens as water magnifies and disappears from the porous body. As projected, decreasing the density of cellular mortar diminishes its compressive strength and bending strength. Though, for cellular mortar of different densities, the normalized strength-temperature and Young’s modulus-temperature relationships are comparable.  


2020 ◽  
Vol 12 ◽  
Author(s):  
S.V. Kontomaris ◽  
A. Malamou ◽  
A. Stylianou

Background: The determination of the mechanical properties of biological samples using Atomic Force Microscopy (AFM) at the nanoscale is usually performed using basic models arising from the contact mechanics theory. In particular, the Hertz model is the most frequently used theoretical tool for data processing. However, the Hertz model requires several assumptions such as homogeneous and isotropic samples and indenters with perfectly spherical or conical shapes. As it is widely known, none of these requirements are 100 % fulfilled for the case of indentation experiments at the nanoscale. As a result, significant errors arise in the Young’s modulus calculation. At the same time, an analytical model that could account complexities of soft biomaterials, such as nonlinear behavior, anisotropy, and heterogeneity, may be far-reaching. In addition, this hypothetical model would be ‘too difficult’ to be applied in real clinical activities since it would require very heavy workload and highly specialized personnel. Objective: In this paper a simple solution is provided to the aforementioned dead-end. A new approach is introduced in order to provide a simple and accurate method for the mechanical characterization at the nanoscale. Method: The ratio of the work done by the indenter on the sample of interest to the work done by the indenter on a reference sample is introduced as a new physical quantity that does not require homogeneous, isotropic samples or perfect indenters. Results: The proposed approach, not only provides an accurate solution from a physical perspective but also a simpler solution which does not require activities such as the determination of the cantilever’s spring constant and the dimensions of the AFM tip. Conclusion: The proposed, by this opinion paper, solution aims to provide a significant opportunity to overcome the existing limitations provided by Hertzian mechanics and apply AFM techniques in real clinical activities.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 328
Author(s):  
Kamil Anasiewicz ◽  
Józef Kuczmaszewski

This article is an evaluation of the phenomena occurring in adhesive joints during curing and their consequences. Considering changes in the values of Young’s modulus distributed along the joint thickness, and potential changes in adhesive strength in the cured state, the use of a numerical model may make it possible to improve finite element simulation effects and bring their results closer to experimental data. The results of a tensile test of a double overlap adhesive joint sample, performed using an extensometer, are presented. This test allowed for the precise determination of the shear modulus G of the cured adhesive under experimental conditions. Then, on the basis of the research carried out so far, a numerical model was built, taking the differences observed in the properties of the joint material into account. The stress distribution in a three-zone adhesive joint was analyzed in comparison to the standard numerical model in which the adhesive in the joint was treated as isotropic. It is proposed that a joint model with three-zones, differing in the Young’s modulus values, is more accurate for mapping the experimental results.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


1928 ◽  
Vol 24 (2) ◽  
pp. 276-279
Author(s):  
C. F. Sharman

There are two general methods of measuring the elastic constants of bodies; one involves a study of the static deformation produced by the appropriate kind of stress, and the other a measurement of the period of oscillation of a system of known inertia under the elastic forces.


Sign in / Sign up

Export Citation Format

Share Document