Devulcanization of Sulfur-Cured Isoprene Rubber in Supercritical Carbon Dioxide

2003 ◽  
Vol 76 (4) ◽  
pp. 957-968 ◽  
Author(s):  
M. Kojima ◽  
K. Ogawa ◽  
H. Mizoshima ◽  
M. Tosaka ◽  
S. Kohjiya ◽  
...  

Abstract A new devulcanization process that utilizes supercritical CO2 (scCO2) along with devulcanizing reagents was studied. Unfilled polyisoprene rubber samples (vulcanizates) with different crosslink distributions were prepared by controlling the cure time and the curatives. Each of the vulcanizates was subjected to the Soxhlet extraction using azeotropic acetone/chloroform to remove residual curatives. The devulcanization was performed at various temperatures (140–200 °C) in the presence of scCO2 for 60 min. The product was fractionated into sol and gel components, and molecular weight of the sol component and the crosslink density of the gel component were determined. Thiol-amine reagent was found to be effective among several devulcanizing reagents; the molecular weight of the resulted sol component was about tens of thousands and the crosslink density of gel component decreased substantially from the initial ones. Yield of the sol component increased with the increase in the CO2 pressure. In the supercritical fluid state of CO2, the vulcanizate was more efficiently devulcanized than in an ordinary gaseous state of CO2. The sol fraction depended considerably on the crosslink distribution in the vulcanizate. These results suggest that the devulcanizing reagents penetrate and diffuse into the vulcanizate in the presence of scCO2.

2016 ◽  
Vol 10 (8) ◽  
pp. 1180-1190 ◽  
Author(s):  
Ameer Abed Jaddoa ◽  
A. A. Zakharov ◽  
T. R. Bilalov ◽  
R. R. Nakipov ◽  
I. R. Gabitov ◽  
...  

2013 ◽  
Vol 114 (14) ◽  
pp. 143303 ◽  
Author(s):  
Keiichiro Urabe ◽  
Toru Kato ◽  
Sven Stauss ◽  
Shohei Himeno ◽  
Satoshi Kato ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 850
Author(s):  
Donghyuk Kim ◽  
Byungkyu Ahn ◽  
Kihyun Kim ◽  
JongYeop Lee ◽  
Il Jin Kim ◽  
...  

Liquid butadiene rubber (LqBR) which used as a processing aid play a vital role in the manufacturing of high-performance tire tread compounds. However, the studies on the effect of molecular weight, microstructure, and functionalization of LqBR on the properties of compounds are still insufficient. In this study, non-functionalized and center-functionalized liquid butadiene rubbers (N-LqBR and C-LqBR modified with ethoxysilyl group, respectively) were synthesized with low vinyl content and different molecular weights using anionic polymerization. In addition, LqBR was added to the silica-filled SSBR compounds as an alternative to treated distillate aromatic extract (TDAE) oil, and the effect of molecular weight and functionalization on the properties of the silica-filled SSBR compound was examined. C-LqBR showed a low Payne effect and Mooney viscosity because of improved silica dispersion due to the ethoxysilyl functional group. Furthermore, C-LqBR showed an increased crosslink density, improved mechanical properties, and reduced organic matter extraction compared to the N-LqBR compound. LqBR reduced the glass transition temperature (Tg) of the compound significantly, thereby improving snow traction and abrasion resistance compared to TDAE oil. Furthermore, the energy loss characteristics revealed that the hysteresis loss attributable to the free chain ends of LqBR was dominant.


2011 ◽  
Vol 317-319 ◽  
pp. 1153-1162
Author(s):  
Jium Ming Lin ◽  
Po Kuang Chang ◽  
Cheng Hung Lin ◽  
Qi Kun Zhang

This research proposes a wireless RFID-based thermal bubble accelerometer design, and relates more particularly for the technology to manufacture and package it on a flexible substrate. The key technology is to integrate both a thermal bubble accelerometer and a wireless RFID antenna on the same substrate, such that the accelerometer is very convenient for fabrication and usage. In this paper the heaters as well as the thermal sensors are directly adhering on the surface of the flexible substrate without the traditional floating structure. Thus the structure is much simpler and cheaper for manufacturing, and much more reliable in large acceleration impact condition without broken. Furthermore, the molecular weight of xenon gas is much larger than carbon dioxide, thus the performance of the accelerometer will be increased. In addition, the shape of the chamber is changed as a semi-cylindrical one instead of the conventional rectangular type. Comparisons of sensitivity and response time are also made; one can see the performances of the proposed new design with either semi-cylindrical chamber or filled with xenon gas are better.


1957 ◽  
Vol 30 (4) ◽  
pp. 1162-1165
Author(s):  
A. A. Berlin

Abstract At the present time there is a multitude of data indicating that when polystyrene, natural rubber, polyvinyl acetate, cellulose, starch, proteins and other high molecular weight compounds are mechanically ground up, a degradation of the polymeric chains is observed. The mechanical scission of macromolecules during grinding in a colloid or ball mill, or when they are broken down on mill rolls, proceeds most rapidly at temperatures below the range of the viscous-fluid state, since under these conditions the forces of intermolecular interaction are considerably greater than the strength of the covalent bond. However, the mechanical destruction of macromolecules is also possible through certain mechanical effects acting on solutions of polymers. Thus, for instance, the force of friction generated in the flow of a 0.05% solution of polystyrene (Mcp=6×105) in tetralin through a platinum capillary is due to the scission of macromolecules, which brings about a 30% decrease in the specific viscosity. The significant gradients in the rate and in the forces of friction and cavitation developed in polymer solution through the action of ultrasonic waves with frequencies of the order of 200–300 kilocycles/sec. are due to the mechanical scission of macromolecules of polystyrene, rubber, polyvinyl acetate, cellulose and a number of other high molecular weight compounds.


Sign in / Sign up

Export Citation Format

Share Document