The Fibrous Properties and Abrasion Resistance of Synthetic Rubber Compounds

1941 ◽  
Vol 14 (4) ◽  
pp. 786-798
Author(s):  
A. Kusov

Abstract 1. A method of measuring the tear resistance of rubber compounds was developed. This method has a number of advantages over other methods (Goodrich, Heidensohn, Goodyear, etc.), including the following. (a) The symmetrical shape and the large surface of tearing (20 sq. cm.). This excludes the possibility of short, accidental tears, and enables better observation of the nature of the tear. (b) Owing to the small size of the clamped portion of the specimen compared to the size of the tearing surface, “end effects” are largely eliminated. (c) Tearing forces are registered periodically (every 10 seconds), and it is possible in this way to determine the total energy expended on tearing, and the nature of its changes. (d) The experiments are easy to perform, and the apparatus is simple. 2. The addition of carbon black (10–100 per cent) to synthetic rubber compounds increases considerably the tear resistances of the vulcanized products. The best results are obtained with compounds containing between 50 and 75 per cent of carbon black. 3. A zinc oxide content of between 8 and 14 per cent improves the tear resistances of compounds of both synthetic and natural rubbers. 4. Compounds with increased fibrous structure show increased abrasion resistance when the fiber direction is parallel to the movement of the abrading surface. 5. Compounds cured for short times only show low tear resistances when made of synthetic rubbers of both low (0.31) and high (0.87) plasticity. The best results are obtained with compounds made of synthetic rubber of medium plasticity (0.53 and 0.40) (see Figure 4). 6. When comparing tear resistances, it is of the utmost importance to maintain the thickness of test-specimens within narrow limits. It is desirable to keep variations within 10–15 per cent. 7. The weakening of the uncut portion of a test-specimen with increase in depth of cut is less pronounced with compounds of synthetic rubber than it is with natural rubber compounds, particularly in the case of overcured samples. With synthetic compounds, this weakening effect varies 2–3 times; with natural rubber compounds it is 3.5–6.5 times. The relation between tear resistance and depth of cut is shown in Figure 5 and Table VI. 8. Carbon black compounds of both synthetic and natural rubbers exhibit various structural forms of tearing. Synthetic rubber compounds with low tear resistances show simple and smooth tearing surfaces, usually in the prolongation of the cut, or at a slight angle to it (Figure 1, type A or intermediate between A and B). Synthetic compounds with high tear resistances show complicated tearing surfaces (Figures 6 and 7, types C, D, E and F).

1944 ◽  
Vol 17 (2) ◽  
pp. 451-474
Author(s):  
D. Parkinson

Abstract Carbon blacks can be grouped into different classes according to the way in which their fineness of division relates to different properties in rubber. Within any one class the principal properties vary in a regular manner with particle size. The normal class consists of the furnace carbons, Kosmos (Dixie)-40, Statex, the rubber-grade impingement carbons, and possibly, the color-grade impingement carbons. The subnormal classes consist of thermal carbons and acetylene and lamp blacks. Irrespective of the above classification, the properties which depend more on fineness of division than on other factors are rebound resilience, abrasion resistance, tensile strength and tear resistance. The lower limit of particle diameter for best tensile strength and tear resistance appears to be higher than that for abrasion resistance. B.S.I, hardness and electrical conductivity are properties which depend at least as much on other factors as on particle size. Stiffness (modulus) depends more on other factors than on particle size. Factors modifying the effects of particle size (or specific surface) include the presence of carbon-carbon structures and a reduction in strength of bond in rubber-carbon structures. Carbon black is thought to exist in rubber in four states: agglomerated, flocculated, dispersed, and bonded to the rubber molecules (the reënforcing fraction). Abrasion resistance is regarded as providing the only reliable measure of reënforcement.


1953 ◽  
Vol 26 (1) ◽  
pp. 156-165
Author(s):  
Ira Williams

Abstract The presence of pigments in rubber compounds produces physical properties which are of importance both before and after vulcanization. The ability of the unvulcanized mixture to calender or extrude smoothly with minimum swelling and to maintain shape during air cures, and the tensile strength, tear resistence, and abrasion resistance of vulcanized stocks all are affected. The methods by which these changes are brought about have been considered by many investigators and have been summarized by Parkinson1 and by Shepard, Street, and Park. Since carbon black is the most generally useful reinforcing pigment, it is natural that investigations have been directed particularly to this product. However, while it is recognized that differences exist in the final properties imparted by different pigments, all solid compounding ingredients have something in common. This point can be illustrated by the tear resistance imparted by such a variety of pigments as carbon black, zinc oxide, whiting, and clay. The effect of volume loading on the tear resistance of vulcanized stocks containing these materials, determined by the method of Zimmerman is shown in Figure 1. The effect of solid compounding ingredients can be studied only by considering the compound as a whole, since the properties are determined very largely by the relation between the solid particle and the matrix which surrounds it. Since the introduction of the many types of synthetic rubbers, the complexity of the problem has been greatly increased by the different states of polymerization, which affect the ability of the rubber to conform to the shape of the pigment particle and by the differences in polar nature which affect the type and the degree of adhesion between filler and matrix.


1982 ◽  
Vol 55 (4) ◽  
pp. 1180-1220 ◽  
Author(s):  
Zvi Rigbi

Abstract The mechanism by which carbon black reinforces elastomers is one of the most interesting problems of modern technology and still a subject of much speculation. The effect itself was discovered by S. C. Mote of the India-Rubber, Gutta-Percha and Telegraph Works Co. of Silvertown, near London, as a result of an effort to improve the properties of rubber even more than was possible by zinc oxide. The (American) Goodrich Company purchased certain manufacturing rights from the Silvertown company in 1912, and by 1915, the inclusion of carbon black in rubber compounds of high quality had become general. The most important effect observed upon introduction of carbon black into rubber was the vast improvement in abrasion resistance. As long as natural rubber was the unique elastomer in general use, other effects of carbon black, although by no means insignificant, were not of the same great importance, with the possible exception of tear resistance. With the outbreak of war in 1939 and the consequent shortage of natural rubber in the industrial West, the introduction of the copolymer of butadiene and styrene, then known as Buna or GR-S, as an almost total replacement for natural rubber, would not have been possible without carbon black. It may be stated, with little likelihood of contradiction, that no other product exists which contributes as much strength and abrasion resistance to noncrystallizing rubbers, while maintaining to a large extent their desirable elastic properties, as does carbon black. In spite of the tremendous consumption of carbon black, mainly in tires, and the steady progress made in improving its quality, the reasons for its unique behavior are still largely a matter of speculation and debate. The subject is enormously complex, as may be gathered from a survey of the literature. Many studies have been published describing one aspect or another of the behavior of carbon black (or carbon blacks, since there are many grades available) and these are still appearing. Some excellent papers and books survey and analyze the available information, such as those by Studebaker, Kraus, Donnet and Voet, and Medalia.


1941 ◽  
Vol 14 (4) ◽  
pp. 863-876
Author(s):  
G. A. Patrikeev ◽  
A. I. Melnikov

Abstract 1. An improved method of measuring tear resistance was developed. The samples which were examined were cut in the direction of stretching. 2. The relation between tear resistance and time of vulcanization was investigated. 3. The tear resistances of synthetic and natural rubbers were compared. 4. It is shown that the tear resistance of samples of natural and synthetic rubber depends on the depth of the initial cut. With short cuts, natural rubber has a higher tear resistance than synthetic rubber, but this difference decreases as the cut is made longer. 5. It is established that the tear resistance of thin rubber specimens is smaller than that of thicker specimens. 6. The mechanism of tear resistance is discussed. Factors such as deformation are considered.


Author(s):  
Xuanyu Shi ◽  
Shihao Sun ◽  
An Zhao ◽  
Haimo Zhang ◽  
Min Zuo ◽  
...  

2017 ◽  
Vol 744 ◽  
pp. 282-287
Author(s):  
Sarawut Prasertsri ◽  
Sansanee Srichan

This research aimed to develop the formulation of natural rubber filled with carbon black, silica and calcium carbonate for rubber calf nipple application. The reverse engineering was performed on the calf nipple product to analyze the rubber type and component by using Soxhlet extraction, thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) techniques. Furthermore, mechanical properties were examined to act as benchmark for the rubber compound design. The results showed that rubber component in the nipple product was natural rubber, whereas two filler types revealed as carbon black and calcium carbonate with 10 and 35 of the total weight. In addition, rubber nipple showed the hardness of 46±1 Shore A and tensile strength of 5.3±0.60 MPa. From the investigation of the properties of developed rubber compounds in this work, it was found that the mechanical properties depended on type and content of filler. The required mechanical properties of vulcanizates were achieved at 20 phr of carbon black (N330), 20 phr of silica and 120 phr of calcium carbonate.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
S. Sattayanurak ◽  
J. W. M. Noordermeer ◽  
K. Sahakaro ◽  
W. Kaewsakul ◽  
W. K. Dierkes ◽  
...  

Modern fuel-saving tire treads are commonly reinforced by silica due to the fact that this leads to lower rolling resistance and higher wet grip compared to carbon black-filled alternatives. The introduction of secondary fillers into the silica-reinforced tread compounds, often named hybrid fillers, may have the potential to improve tire performance further. In the present work, two secondary fillers organoclay nanofiller and N134 carbon black were added to silica-based natural rubber compounds at a proportion of silica/secondary filler of 45/10 phr. The compounds were prepared with variable mixing temperatures based on the mixing procedure commonly in use for silica-filled NR systems. The results of Mooney viscosity, Payne effect, cure behavior, and mechanical properties imply that the silica hydrophobation and coupling reaction of the silane coupling agent with silica and elastomer are significantly influenced by organoclay due to an effect of its modifier: an organic ammonium derivative. This has an effect on scorch safety and cure rate. The compounds where carbon black was added as a secondary filler do not show this behavior. They give inferior filler dispersion compared to the pure silica-filled compound, attributed to an inappropriate high mixing temperature and the high specific surface area of the carbon black used. The dynamic properties indicate that there is a potential to improve wet traction and rolling resistance of a tire tread when using organoclay as secondary filler, while the combination of carbon black in silica-filled NR does not change these properties.


Sign in / Sign up

Export Citation Format

Share Document