scholarly journals Effect of Rice Conch Shell Powder as a Partial Replacement of Cement in Normal Concrete

2021 ◽  
Vol 3 (3) ◽  
pp. 76-86
Author(s):  
Reiner Putra Pakanan ◽  
Jonie Tanijaya ◽  
Olan Jujun Sanggaria

Along with the increasing pace of development, many methods and research have been carried out and developed aimed at increasing the strength of concrete, one of which is by utilizing waste rice snail shells as a partial replacement of cement. This snail is considered a pest for farmers. Snail carcasses can also damage the environment and cause a bad smell. This can be used and utilized as an alternative material in concrete mixtures. The percentage of use of rice snail shell substitution varied, namely 0%, 10%, and 15%. The tests carried out were the compressive strength test, split tensile strength test, flexural strength test, and the modulus of elasticity of concrete with a concrete quality of 25 MPa. The test objects used were cylinders measuring 15 cm and 30 cm high and beams measuring 60 cm × 15 cm × 15 cm with variations in age of 7 days, 21 days, and 28 days. The highest value was obtained at 10% snail shell variation with 27,540 MPa, 2,735 MPa, 4,131 MPa, respectively. so that the 10% snail shell variation used in this study is still safe to use as a cement substitution material in normal concrete mixtures.

2021 ◽  
Author(s):  
Suseela Alla ◽  
SS. Asadi

Abstract Snail shells are the discarded bio-shell waste from restaurants, and oceans creating huge environmental problems for society. Living organisms are harmed when these shells are released. As previously stated, the work focuses primarily on the utilisation of snail shell powder as a raw ingredient in cement mortar. The mechanical and durability features of snail shell-based cement mortar were compared to the nominal mortar in this study. Snail shell powder, ranging from 0% to 35%, was used to partially substitute cement in mortar, with a variation of 5%. XRD (X-Ray Diffraction) was used to determine the chemical composition of both mixes. The mechanical properties of mortar for both mixes were determined using a compressive strength test. The tests on cement mortar viz., Water Absorption, Sorptivity, Acid Durability, and Rapid Chloride Permeability Test (RCP Test) were compared with nominal mortar mix. According to the results of the investigation, the optimum use of snail shell powder is 30%. The durability of both mixes increased by the increase of the snail shell powder. To detect the C-S-H gel formations, microstructural analysis was performed for both mixes.


2019 ◽  
Vol 8 (3) ◽  
pp. 7736-7739 ◽  

This paper studies the effect of incorporating metakaolin on the mechanical properties of high grade concrete. Three different metakaolins calcined at different temperature and durations were used to make concrete specimens. Three different concrete mixtures were characterized using 20% metakaolin in place of cement. A normal concrete mix was also made for comparison purpose. The compressive strength test, split tensile test and flexural strength tests were conducted on the specimens. The compressive strength test results showed that all the metakaolin incorporated concrete specimens exhibited higher compressive strength and performed better than normal concrete at all the days of curing. The rate of strength development of all the mixes was also studied. The study revealed that all the three different metakaolin incorporated mixtures had different rate of strength development for all the days of hydration (3, 7,14, 28, 56 and 90), indicating that all the metakaolins possessed different rate of pozzolanic reactivity. Further, from the analysis of the test results, it was concluded that the variation in the rate of strength development is due to the differences in the temperature and duration at which they were manufactured. The results of split tensile strength test and the flexural strength test conducted on the specimens, supported the conclusions drawn from the results of compressive strength test. The paper also discusses, the rate of development of compressive strength and the pozzolanic behaviour of the metakaolins in light of their parameters of calcination and physical properties such as amorphousness and particle size. This paper has been written with a view to make the potential of metakaolin available to the construction industry at large


Author(s):  
S. B. Kandekar ◽  
◽  
S. K. Wakchaure ◽  

Materials are the most important component of building construction. The demands of construction material are increasing day by day significantly. This demand is increasing the material prices and scarcity of material in construction industry. To achieve economical and eco-friendly criteria naturally occurring material is selected. Clay is a natural material and it can be available easily. This paper interprets the experimental investigation on strength of concrete using clay as a partial replacement to binder content (cement) in concrete. The replacement percentages are grouped as 0%, 10%, 20%, 30%, 40% of clay and 5% of hydrated lime with cement in each series in M25 grade of concrete. To achieve the pozzolanic property of clay hydrated lime was added. Different tests are performed to determine the optimum percentage of clay as a replacement for binder content (cement) in concrete. The Compressive strength test, split tensile strength test and flexural strength test were performed on the specimens. Total 90 cubes of size 150 mm were prepared for compressive strength test, 30 cylinders of 150 mm diameter and 300 mm height were prepared for split tensile strength test and 30 beams of size 150 mm x 150 mm x 1000 mm were prepared to carry out the flexural strength test. The results are compared to find the ideal proportion of clay as a replacement for cement. It is found that 10% replacement with 5% hydrated lime gives satisfactory results.


2021 ◽  
Author(s):  
Suseela Alla ◽  
SS. Asadi

Abstract Snail shells are the discarded bio-shell waste from restaurants, and oceans creating huge environmental problems for society. Living organisms are harmed when these shells are released. As previously stated, the work focuses primarily on the utilisation of snail shell powder as a raw ingredient in cement mortar. The mechanical and durability features of snail shell-based cement mortar were compared to the nominal mortar in this study. Snail shell powder, ranging from 0% to 35%, was used to partially substitute cement in mortar, with a variation of 5%. XRD (X-Ray Diffraction) was used to determine the chemical composition of both mixes. The mechanical properties of mortar for both mixes were determined using a compressive strength test. The tests on cement mortar viz., Water Absorption, Sorptivity, Acid Durability, and Rapid Chloride Permeability Test (RCP Test) were compared with nominal mortar mix. According to the results of the investigation, the optimum use of snail shell powder is 30%. The durability of both mixes increased by the increase of the snail shell powder. To detect the C-S-H gel formations, microstructural analysis was performed for both mixes.


2019 ◽  
Vol 8 (3) ◽  
pp. 6852-6855

This project deals with the investigation of strength property of concrete made by partial replacement of cement using ion exchange resin waste. Ion exchange resin waste is readily available at free of cost in various industries. We are using the cation exchange resin waste from water softening process. This waste material is collected from a local place in Chennai In recent years, ion exchange resin is used in concrete for corrosion resistant purpose. The percentage replacements of cement by using ion exchange resin waste are 10%, 20% and 30% by weight. The results indicate The selected concrete grade is M30 and water cement ratio is 0.45. Cubes and cylinders are casted with the specified replacement of cement by using ion exchange resin waste. The strength has been checked at 7 days, 14 days and 28 days curing for the specimens made with specified partial replacement of cement by using ion exchange resin waste. Cubes are subjected to compressive strength test and cylinders are subjected to split tensile strength test. It has been concluded that the reasonable strength of 31.76 N/mm2 (Target strength of M20 grade concrete) may be attained in M30 grade mix ratio while adding ion exchange resin waste as 10% replacement of cement. So the optimum percentage of replacement of cement is 10% for both cubes and cylinders.


2021 ◽  
Vol 3 (4) ◽  
pp. 132-140
Author(s):  
Mulyati Mulyati ◽  
Wiki Yulandi

This research uses paper ash, lokan shell powder, and sikacim concrete additivefor normal concrete mix. Paper ash is used as a cement additive, while lokan shell powder is used as a partial substitute for sand. To overcome the lack of water in the concrete mixture, Sikacim concrete additive is used. The purpose of this study was to determine the compressive strength of concrete resulting from the use of paper ash as an additive and lokan shell powder as a substitute for sand by adding sikacim concrete additive.The test object used a cube mold of 15 cm x 15 cm x 15 cm with a concrete compressive strength of K-250 design at the age of 28 days of testing. Variations of the specimens used paper ash 0.25% by weight of cement, and lokan shell powder 0%, 10%, 20%, 30% by weight of sand, and 0.7% additive from the volume of water. Based on the results of the compressive strength test of concrete, the compressive strength of concrete is obtained, for normal concrete it is 276.6 kg/cm2, from the use of 0.25% paper ash, 0% lokan shell and 0.7% additive of 362.6 kg/cm2, from the use of 0.25% paper ash, 10% lokan shell and 0.7% additive of 365.3 kg/cm2, from the use of 0.25% paper ash, 20% lokan shell and 0.7% additive of 300.53 kg /cm2, from the use of 0.25% paper ash, 30% lokan shell and 0.7% additive of 250.16 kg/cm2.


2019 ◽  
Vol 1 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Edoardo E. Kumendong ◽  
Steve W.M. Supit ◽  
Helen Mantiri

The presence of coconut sawdust in North Sulawesi is very potential to be utilized as an alternative material for application in construction field. This paper aims to investigate experimentally the effect of coconut sawdust as an addition on concrete mixtures based on compressive strength, flexural strength and volume permeable voids tests. In this study, coconut sawdust with percentage of 2.5%, 5% and 7.5% by weight of cement was added into concrete mixture. The results show that concrete containing 5% of coconut sawdust exhibited highest compressive strength at 7 days with average value is 25.71 MPa while at 28 days the compressive strength is 30.50 MPa and there is no significant difference compared with 2.5% variation. When comparing the results of flexural strength test between 5% and normal cement concrete, the highest result is achieved by normal concrete reaching the value 6.78 MPa while for the concrete with 5% of coconut sawdust addition is only on 4.82 MPa. In terms of the volume of permeable voids, the results show that the porosity of concrete with coconut sawdust increased with the increase of percentage of coconut sawdust at 7 days but the values decreased as the age of curing increased.


Jurnal CIVILA ◽  
2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Asrul Majid ◽  
Hammam Rofiqi Agustapraja

Infrastructure development is one of the important aspects of the progress of a country where most of the constituents of infrastructure are concrete. The most important constituent of concrete is cement because its function is to bind other concrete materials so that it can form a hard mass. The large number of developments using cement as a building material will leave quite a lot of cement bags.In this study, the authors conducted research on the effect of adding cement waste to the compressive strength of concrete. This study used an experimental method with a total of 24 test objects. The test object is in the form of a concrete cylinder with a diameter of 15 cm and a height of 30 cm and uses variations in the composition of the addition of cement waste cement as a substitute for fine aggregate, namely 0%, 2%, 4% and 6%. K200). The compressive strength test was carried out at the age of 7 days and 28 days.The test results show that the use of waste as a partial substitute for fine aggregate results in a decrease in the compressive strength of each mixture. at the age of 7 days the variation of 2% is 16.84 MPa, 4% is 11.32 MPa and for a mixture of 6% is 6.68 MPa. Meanwhile, the compressive strength test value of 28 days old concrete in each mixture decreased by ± 6 MPa. So the conclusion is cement cement waste cannot be used as a substitute for fine aggregate in fc 16.6 (K200) quality concrete because the value is lower than the specified minimum of 16.6 MPa.


Author(s):  
A Aswani and Janardhan G

In construction world concrete plays a vital role, around 60% of structure consists of Concrete. However, the production of Portland cement, an essential constituent of concrete, leads to the release of significant amounts of CO2, depletion of natural resources and environmental degradation. This paper investigates the compressive strength of concrete by replacing cement with GGBS and silica fume effect of glass fibers on performance of concrete is studied. In this present work a humble attempt had been made to evaluate and compare the compressive strengths of GGBS blended concrete cubes with controlled concrete cubes cured under sea water for 28 days. By conducting the tests on the cubes, conclusions were drawn after plotting and analyzing the results. Compressive strength test is conducted on the samples after 28 days. The optimum value is obtained at 15% replacement with GGBS and 5% with Silica fume. In this study again we trailed addition with Glass fibers with the percentage of 0.5%,1.0%,1.5%, compressive strength have been studied. Finally at 1.0% addition we get maximum strength compared to controlled mix.


Nowadays improvement in infrastructure construction is raising its place in the present scenario. But around the globe many reinforced masonry and concrete buildings are constructed annually. There are massive numbers of structures which become worse due to adjustments in use, adjustments in loading condition and modifications in design configuration, inferior construction, and material used or natural calamities. Thus, repairing and retrofitting of this structure for secure usage of has a top notch marketplace. There are several conditions wherein a civil structure might require retrofitting. In this paper an attempt has been taken to study the strength enhancement of concrete cylinders and prisms using Basalt fibre wrap, Nitro wrap and nylon wrap.. Cubes, cylinders and prisms are tested for compressive strength test, split tensile strength test, flexural strength. Then the conventional specimens and synthetic wrapped results are compared


Sign in / Sign up

Export Citation Format

Share Document