scholarly journals Experimental Investigation of Snail Shell-Based Cement Mortar: Mechanical Strength, Durability and Microstructure

Author(s):  
Suseela Alla ◽  
SS. Asadi

Abstract Snail shells are the discarded bio-shell waste from restaurants, and oceans creating huge environmental problems for society. Living organisms are harmed when these shells are released. As previously stated, the work focuses primarily on the utilisation of snail shell powder as a raw ingredient in cement mortar. The mechanical and durability features of snail shell-based cement mortar were compared to the nominal mortar in this study. Snail shell powder, ranging from 0% to 35%, was used to partially substitute cement in mortar, with a variation of 5%. XRD (X-Ray Diffraction) was used to determine the chemical composition of both mixes. The mechanical properties of mortar for both mixes were determined using a compressive strength test. The tests on cement mortar viz., Water Absorption, Sorptivity, Acid Durability, and Rapid Chloride Permeability Test (RCP Test) were compared with nominal mortar mix. According to the results of the investigation, the optimum use of snail shell powder is 30%. The durability of both mixes increased by the increase of the snail shell powder. To detect the C-S-H gel formations, microstructural analysis was performed for both mixes.

2021 ◽  
Author(s):  
Suseela Alla ◽  
SS. Asadi

Abstract Snail shells are the discarded bio-shell waste from restaurants, and oceans creating huge environmental problems for society. Living organisms are harmed when these shells are released. As previously stated, the work focuses primarily on the utilisation of snail shell powder as a raw ingredient in cement mortar. The mechanical and durability features of snail shell-based cement mortar were compared to the nominal mortar in this study. Snail shell powder, ranging from 0% to 35%, was used to partially substitute cement in mortar, with a variation of 5%. XRD (X-Ray Diffraction) was used to determine the chemical composition of both mixes. The mechanical properties of mortar for both mixes were determined using a compressive strength test. The tests on cement mortar viz., Water Absorption, Sorptivity, Acid Durability, and Rapid Chloride Permeability Test (RCP Test) were compared with nominal mortar mix. According to the results of the investigation, the optimum use of snail shell powder is 30%. The durability of both mixes increased by the increase of the snail shell powder. To detect the C-S-H gel formations, microstructural analysis was performed for both mixes.


2021 ◽  
Vol 3 (3) ◽  
pp. 76-86
Author(s):  
Reiner Putra Pakanan ◽  
Jonie Tanijaya ◽  
Olan Jujun Sanggaria

Along with the increasing pace of development, many methods and research have been carried out and developed aimed at increasing the strength of concrete, one of which is by utilizing waste rice snail shells as a partial replacement of cement. This snail is considered a pest for farmers. Snail carcasses can also damage the environment and cause a bad smell. This can be used and utilized as an alternative material in concrete mixtures. The percentage of use of rice snail shell substitution varied, namely 0%, 10%, and 15%. The tests carried out were the compressive strength test, split tensile strength test, flexural strength test, and the modulus of elasticity of concrete with a concrete quality of 25 MPa. The test objects used were cylinders measuring 15 cm and 30 cm high and beams measuring 60 cm × 15 cm × 15 cm with variations in age of 7 days, 21 days, and 28 days. The highest value was obtained at 10% snail shell variation with 27,540 MPa, 2,735 MPa, 4,131 MPa, respectively. so that the 10% snail shell variation used in this study is still safe to use as a cement substitution material in normal concrete mixtures.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 852
Author(s):  
Asiful H. Seikh ◽  
Hossam Halfa ◽  
Mahmoud S. Soliman

Molybdenum (Mo) is an important alloying element in maraging steels. In this study, we altered the Mo concentration during the production of four cobalt-free maraging steels using an electroslag refining process. The microstructure of the four forged maraging steels was evaluated to examine phase contents by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. Additionally, we assessed the corrosion resistance of the newly developed alloys in 3.5% NaCl solution and 1 M H2SO4 solution through potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Furthermore, we performed SEM and energy-dispersive spectroscopy (EDS) analysis after corrosion to assess changes in microstructure and Raman spectroscopy to identify the presence of phases on the electrode surface. The microstructural analysis shows that the formation of retained austenite increases with increasing Mo concentrations. It is found from corrosion study that increasing Mo concentration up to 4.6% increased the corrosion resistance of the steel. However, further increase in Mo concentration reduces the corrosion resistance.


2014 ◽  
Vol 59 (1) ◽  
pp. 89-95 ◽  
Author(s):  
A. Prstić ◽  
Z. Aćimović-Pavlović ◽  
A. Terzić ◽  
L. Pavlović

Abstract Refractory coatings based on different refractory fillers (talc, cordierite, zircon and mullite) for application in Lost Foam casting process were investigated. Design and optimization of the coatings composition with controlled, rheological properties included, and consequently synthesis were achieved by application of different coating components, namely different suspension agents and fillers and by alteration of the coating production procedure. Morphologic and microstructural analysis of fillers was carried out by means of scanning electronic microscope. X-ray diffraction analysis by means of X-ray diffractometer was applied in determination and monitoring the phase composition changes of the refractory fillers. An analysis of the particle size and shape was carried out by means of the PC software application package OZARIA 2.5. To assess the effects of application of individual refractory coatings, a detailed investigation of structural and mechanical properties of the moldings obtained was performed. Highlight was placed on revealing and analyzing surface and volume defects present on moldings. Radiographic molding tests were carried out by means of the X-ray device SAIFORT type-S200. Attained results are essential for the synthesis of refractory coatings based on high-temperature fillers and their applications in Lost Foam casting process for manufacturing of moldings with in-advance-set properties.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Stefania Pragliola ◽  
Antonio Botta ◽  
Rubina Troiano ◽  
Veronica Paradiso ◽  
Fabia Grisi

A new norbornene dicarboximide presenting a pendant carbazole moiety linked by a p-methylene benzyl spacer is synthesized. This carbazole-functionalized monomer is polymerized via ring-opening metathesis polymerization using Grubbs third-generation catalyst. Microstructural analysis of resulting polymers performed by Nuclear Magnetic Resonance (NMR) shows that they are stereoirregular. Wide-angle X-ray diffraction (WAXD) and thermal (DSC) analysis indicate that polymers are also amorphous. With respect to the fluorescence analysis, both solution and film polymer samples exhibit only “normal structured” carbazole fluorescence, while excimer formation by overlap of carbazole groups is not detected.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3295
Author(s):  
Mohammad R. Irshidat ◽  
Nasser Al-Nuaimi

This paper experimentally investigates the effect of utilization of carbon dust generated as an industrial waste from aluminum factories in cementitious composites production. Carbon dust is collected, characterized, and then used to partially replace cement particles in cement mortar production. The effect of adding different dosages of carbon dust in the range of 5% to 40% by weight of cement on compressive strength, microstructure, and chemical composition of cement mortar is investigated. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray fluorescence (XRF) analysis are used to justify the results. Experimental results show that incorporation of carbon dust in cement mortar production not only reduces its environmental side effects but also enhances the strength of cementitious composites. Up to 10% carbon dust by weight of cement can be added to the mixture without adversely affecting the strength of the mortar. Any further addition of carbon dust would decrease the strength. Best enhancement in compressive strength (27%) is achieved in the case of using 5% replacement ratio. SEM images show that incorporation of small amount of carbon dust (less than 10%) lead to produce denser and more compact-structure cement mortar.


2020 ◽  
Vol 54 (30) ◽  
pp. 4921-4928
Author(s):  
A Mohamed ◽  
MM Mohammed ◽  
AF Ibrahim ◽  
Omyma A El-Kady

In this study, copper powder was reinforced with different weight percentages of Al2O3 particles (0, 5, 10, and 15 wt.% Al2O3 coated Ag) to produce Cu-Al2O3 composites by mechanical alloying and uniaxial cold pressing/sintering route. Electro-less deposition was used to coat Al2O3 particles with Ag. The microstructure of the consolidated samples was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) elemental mapping. The porosity, microhardness, and wear behavior of the consolidated samples were also investigated as a function of Al2O3 content. The EDX mapping images reveal that the Al2O3 reinforcement particles were homogeneously distributed into the Cu matrix. Microstructural analysis shows that the addition of Al2O3 coated Ag particles improves density of the composites coating. SEM micrographs result shows that slight porosities exist in the composites produced. Furthermore, the average hardness of the composite coatings varies from 72.3 to 187.6 HV as Al2O3 content increases from 0 to 15 wt.%. The wear test results showed that the composite with higher Al2O3 content 15 wt.% showed the best wear resistance.


Clay Minerals ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 471-485 ◽  
Author(s):  
Angel Sanz ◽  
Joaquín Bastida ◽  
Angel Caballero ◽  
Marek Kojdecki

ABSTRACTCompositional and microstructural analysis of mullites in porcelain whitewares obtained by the firing of two blends of identical triaxial composition using a kaolin B consisting of ‘higher-crystallinity’ kaolinite or a finer halloysitic kaolin M of lower crystal order was performed. No significant changes in the average Al2O3 contents (near the stoichiometric composition 3:2) of the mullites were observed. Fast and slow firing at the same temperature using B or M kaolin yielded different mullite contents. The Warren–Averbach method showed increase of the D110 mullite crystallite size and crystallite size distributions with small shifts to greater values with increasing firing temperature for the same type of firing (slow or fast) using the same kaolin, as well as significant differences between fast and slow firing of the same blend at different temperatures for each kaolin. The higher maximum frequency distribution of crystallite size observed at the same firing temperature using blends with M kaolin suggests a clearer crystallite growth of mullite in this blend. The agreement between thickening perpendicular to prism faces and mean crystallite sizes <D110> of mullite were not always observed because the direction perpendicular to 110 planes is not preferred for growth.


2020 ◽  
Vol 10 (23) ◽  
pp. 8705
Author(s):  
Gankhuyag Burtuujin ◽  
Dasom Son ◽  
Indong Jang ◽  
Chongku Yi ◽  
Hyerin Lee

Rebar embedded inside reinforced concrete structures becomes corroded due to various factors. However, few studies have focused on the corrosion of pre-rusted rebar embedded in cement composites, and the findings reported thus far are inconsistent. Therefore, in this study, an experimental program was undertaken to examine the effect of pre-rusting on the further corrosion of reinforcements in cement composites. Pre-rust was induced using two different solutions (CaCl2 and HCl). The corrosion rate in the cement composite was analyzed using the half-cell potential and polarization resistance methods. In addition, scanning electron microscopy with energy-dispersive X-ray analysis and X-ray diffraction analysis were used to examine the morphology of the rust. The results show that the corrosion rate of the rebar embedded in the cement composite can be increased by more than 3.8 times depending on the pre-rust conditions (RE: 0.0009 mm/year, HCl: 0.0035 mm/year). In addition, we found that the corrosion products in the pre-rusted layer were comparable to those of the rebar corroded in the marine atmosphere.


Sign in / Sign up

Export Citation Format

Share Document