scholarly journals Bending Behavior of Concrete Beams Using Geotextiles in Tensile Areas

2021 ◽  
Vol 3 (3) ◽  
pp. 412-420
Author(s):  
Sri Ponny ◽  
Jonie Tanijaya ◽  
Suryanti Rapang Tonapa

Geotextile is made of permeable geosynthetic. Geotextile s are formed from synthetic fibers based on polymers that have high mechanical properties in tensile strength, trapezoidal tearing strength, and puncture resistance. Therefore, researchers want to increase the use of Geotextile as an added material in the tensile area of concrete blocks. The test objects used are 9 pieces of 150mm×150mm×600mm beams. The results of the research were that the addition of woven Geotextile s and non-woven Geotextile s on concrete blocks increased, for woven Geotextile s by 21.593% of beams without using Geotextile s and non-woven Geotextile s of 17.058% of beams without using Geotextile s. So the use of Geotextile s on concrete blocks can improve quality because the value of the flexural strength of beams using Geotextile s is greater than beams without using Geotextiles.

2014 ◽  
Vol 910 ◽  
pp. 266-269 ◽  
Author(s):  
Jia Horng Lin ◽  
Jing Chzi Hsieh ◽  
Jia Hsun Li ◽  
Wen Hao Hsing ◽  
Ching Wen Lou

Geotextile has been commonly used in civil and geotechnical engineering applications, and the majority of geotextiles is made of nonwoven fabrics. Therefore, this study combines crimped polyester (PET) fibers, recycled Kevlar unidirectional selvage fibers, and low-melting-point PET (LPET) fibers to form PET/Kevlar/LPET nonwoven geotextiles, and then examines how various neelde-punch depths influence mechanical properties of the resulting nonwoven geotextiles. The tensile strength, tearing strength, bursting strength, and static puncture resistance of the nonwoven fabrics increase as a result of an increase of 0.3 cm to 0.5 cm in needle-punch depth. However, an increase of 0.5 cm to 0.7 cm causes a slight decrease in all aforementioned properties.


2012 ◽  
Vol 627 ◽  
pp. 302-306
Author(s):  
Jia Horng Lin ◽  
Shih Yu Huang ◽  
Hui Yu Yang ◽  
Ching Wen Lin ◽  
Jin Mao Chen ◽  
...  

Cotton fiber is a type of natural fibers. Using natural fibers to fabricate textile can not only decrease the consumption of synthetic fibers, but also reduce the environmental pollution. This study aims to fabricate elastic knitted fabrics and evaluate their properties. Polyester (PET) filaments and rubber threads serve as the warp while cotton yarn serves as the weft for warp knitting. A crochet machine makes the warp and weft into warp knits with desirable stretchability, during which the amount (single/double) and the ply number (1-, 2-, and 3-ply) of the weft are further varied. The resulting warp knits are evaluated for water absorption, air permeability, and mechanical properties. As demonstrated by the experimental results, the warp knits with single 1-ply weft (S1) yield an optimal air permeability of 224.6 cm3/cm2/s and stiffness along the warp direction of 4.74cm. The warp knits with single 2-ply weft (S2) display an optimal tearing strength of 86N while the warp knits with double 3-ply weft (D3/3) has an optimal tensile strength of 708N.


2012 ◽  
Vol 164 ◽  
pp. 37-41
Author(s):  
Cheng Yun Yang ◽  
Jin Min Peng

Manufacture process parameters will be obtained from experiments in research. Molding technology determines the mechanical properties and performance of the product. The influence of molding temperature and time are significant on the performance of water lubricated bearing, the plastic alloy is based on latex material, synthesized with different fillings, accelerators and other matters, and displays great mechanical and friction properties. The main performance included peel strength, tensile strength and wearing capacity. Optimization of manufacture process parameters and the orthogonal experiments on them were carried out by integrating the results of experiments and finally the optimal manufacture process was achieved. In the experiment, three-leveled orthogonal tests were conducted for the three systems to test the tensile strength, tearing strength, stress at definite elongation, hardness and tensile rate. The impacts of the respective systems were analyzed and the content of each component are determined to get the optimal formula.


2011 ◽  
Vol 687 ◽  
pp. 617-620 ◽  
Author(s):  
Yu Gang Meng ◽  
Rui Ting Huo ◽  
Chun Zhi Qi ◽  
Ling Yu Chang

Polyvinyl chloride (PVC) architectural membrane material is a species of composite textile material. In comparison with other architectural membrane materials such as PTFE or ETFE, PVC membrane material is much cheaper, softer and easier construction feasibility. In this paper, g-methacryloxypropyl trimethoxy silane (KH-570), chlorinated polyethylene (CPE) and pellet binder (PB) were added into PVC paste, respectively. The mechanical properties (tensile strength, peel strength and tearing strength) of the coated fabric were investigated. It was found that the mechanical characteristics of PVC coated fabric were evidently affected by the addition of KH-570 in the coating paste. Both tensile strength and peel strength of PVC coated fabric were improved by the addition of KH-570. The addition of CPE into the coating paste had little effect on the mechanical properties of the coated fabric. The mechanical properties of the coated fabric were greatly improved by blending with PB, the peel strength enhanced 157% and the tensile strength increased 150N/50mm, but the tearing strength was largely reduced.


An attempt has been made in this paper to study the effect on the mechanical properties of the concrete and hollow concrete block when different types of fibres were added to the mix. The two different types of fibres added include Steel fibres with hooked end and of length 60mm at five different fibre ratios of 2.5%, 2.75%, 3.0%, 3.25% and 3.5% and Nylon fibres having a length of 18mm at the content of 0.5%, 0.75%, 1.0%, 1.25% and 1.50%. The concept of fibre hybridization was also analyzed and the effect was studied by preparing concrete mix with various percentage combinations of steel and nylon fibres at a total fibre ratio of 3% by weight of cement. The investigation focused on finding the optimum values of fibres to be added and also carried out the compressive strength and tensile strength of concrete with and without fibres. The compressive strength of hollow concrete blocks made with and without fibres was also analyzed. The samples of concrete and hollow concrete blocks were cast and immersed in water for a curing period of 28 days. The results on strength of fibre added concrete and hollow concrete block obtained was compared with the control mix result and the study concludes that the steel fibre and nylon fibre added concrete and hollow concrete block showed an improvement in the mechanical properties for each fibre ratio considered. Out of the various combinations of steel and nylon fibre tried, the best compressive strength improvement was exhibited by the concrete mix with 3% of the steel fibre without any addition of nylon fibres while the best tensile strength improvement was shown by the concrete mix with 2.25% of steel fibre and 0.75% of nylon fibre.


Author(s):  
Muhammad Rizwan

This research work aims to investigate experimentally the mechanical properties of solid concrete blocks as an individual unit and assembly (block masonry) employing different mortar mix ratios. The material properties of the concrete block unit, such as compressive strength and unit weight were explored by taking three samples from the four local factories. The block masonry assemblages were subjected to various load patterns for the evaluation of compressive strength, diagonal tensile strength and shear strength. For the bond, four types of mortars i.e., cement – sand (1:4), cement – sand (1:8), cement – sand – khaka (1:2:2) and cement – sand – khaka (1:4:4) were used in the joints of concrete block masonry assemblages. (Khaka is a by-product formed in the stone crushing process). For each type of mortar, three samples of block masonry were fabricated for compressive strength, shear strength and diagonal tensile strength, and tested in the laboratory. It is observed that the replacement of sand by khaka enhanced the mechanical properties of masonry.


Concrete, one of the most universally accepted construction material, exhibits higher values of compressive strength, but the same cannot be said in terms of its tensile strength. This is the prime explanation for the setback of this construction material, to be used in place of achieving a higher tensile strength. Different endeavors have been made to improve the overall tensile strength of concrete by using diverse materials. These materials were used either as a form of replacement of its main constituents, or simply as an addition to the other constituents. Out of all such materials, the use of different types of fibers, added a definite proportion of tensile strength without actually altering the configuration of the concrete blocks to a larger extent. Also, in some cases the density of the concrete is a one of the influencing parameters in structural elements and this study is based on the optimization of fibers as a replacement of the Ordinary Portland cement (OPC) along with the use of different industrial waste by products i.e., mineral admixtures and also the light weight aggregates in order to reduce the self weight of the concrete. In this study, an attempt will be made to investigate the mechanical properties of M60 grade high strength fiber reinforced light weight aggregate concrete.


2021 ◽  
Vol 6 (1) ◽  
pp. 14
Author(s):  
Budiawan Sulaeman ◽  
Rakhmawati Natsir

Tujuan penelitian ini untuk menganalisis pengaruh ukuran besar diameter serat pelepah sagu terhadap sifat mekanik kekuatan tarik, menganalisis sifat mekanik tarik material komposit yang diperkuat serat pelepah sagu.Berdasarkan hasil penelitian; (1). Larutan NAoH berpengaruh terhadap kuat Tarik specimen, hal ini ditunjukkan pada 2,5% (NAoH terhadap H2O). Nilai kekuatan tariknya 49,486 N/mm2. (2). Serat pelepah sagu kuat tariknya jauh dibawah serat gelas. (48,435 N/mm2< 323 N/mm2). Hal ini disebabkan rongga yang terdapat di serat sintesis lebih rapat dibanding serat alami. (3). Berdasarkan variabel yang diteliti, kekuatan tarik (Ftu) dengan nilai tertinggi terjadi pada komposit (volume 85% matriks : 15% serat) yaitu sebesar 3,12 beban 11824 N. (4). Kekuatan tarik mengalami kenaikan terhadap peningkatan komposisi volume serat. (5). Spesimen uji yang mengalami regangan dan patah pada titik load yaitu pada komposisi volume 85% matriks : 15% serat sebesar 3,12 MPa dengan regangan sebesar 8% dan modulus young yang terjadi sebesar 38,615  MPa.The purpose of this study was to analyze the effect of the size of the sago frond fiber diameter on the mechanical properties of the tensile strength, to analyze the tensile mechanical properties of the composite material reinforced by sago frond fibers. Based on research results; (1) NaOH solution affects the tensile strength of the specimen. This is shown at 2.5% (NaOH to H2O), the tensile strength value is 49.486 N/mm2. (2) Sago frond fiber has a tensile strength far below the glass fiber (48,435 N/mm2 <323 N/mm2). This is because the cavities in synthetic fibers are denser than natural fibers. (3) Based on the variables studied, the tensile strength (Ftu) with the highest value occurs in the composite (85% matrix volume: 15% fiber), which is 3.12 load 11824 N. (4) Tensile strength increases with the increase in fiber volume composition. (5) The test specimens that experienced a strain and fracture at the load point, namely the composition of volume 85% matrix: 15% fiber was 3.12 MPa with a strain of 8% and the modulus young that occurred was 38.615 MPa.


2011 ◽  
Vol 287-290 ◽  
pp. 1481-1485
Author(s):  
Jin Min Peng ◽  
Min Feng Luo

Water lubricated bearings differ from water lubricated bearings in its special choice of material. A novelty material developed with an aim to improve the lubricating performance and bearing capacity, water lubricated bearings BTG plastic alloy is based on latex material, synthesized with different fillings, accelerators and other matters, and displays great mechanical and friction properties. In order to expand its application to the field of water lubrication, a bettered formula was adopted from the aspects of vulcanization, reinforced filling and softened plastification systems to improve its mechanical property. In the experiment, three-leveled orthogonal tests were conducted for the three systems to test the tensile strength, tearing strength, stress at definite elongation, hardness and tensile rate. The impacts of the respective systems were analyzed and the content of each component are determined to get the optimal formula. The modified bearings enjoy some mechanical properties that live up to or even exceed American military standards MIL-B-17901(Vessel).


2018 ◽  
Vol 926 ◽  
pp. 39-44 ◽  
Author(s):  
Dan Peng ◽  
Qiu Hong Mu ◽  
Shuo Zhang ◽  
Jin Hui Li ◽  
Feng Wang

Phenyl silicone resin reinforced addition type liquid phenyl silicone rubber was prepared by vulcanization of vinyl end-capped polymethylphenylsiloxane (PVPS), phenyl MT resins and hydrogen end-capped polydiphenylsiloxane (PHPS) under Pt catalysis at 150°C for 4h. The effects of the proportion and the vinyl content of phenyl MT resins on the mechanical properties of cured products were investigated. The thermal stability was explored by thermogravimetric analysis. The changes of mechanical properties were also studied before and after irradiation. Phenyl silicone rubber with good performance was obtained when the phenyl MT resin content was 50~60 wt% and the vinyl content was at 5.5~6.6 wt%. The onset temperature of thermal degradation and the center temperature of thermal degradation were 443.7°C and 502°C, respectively. When the radiation dose increased from 0 to 300 KGy, the tensile strength decreased from 4.1MPa to 2.3MPa and the tearing strength decreased from 8.9MPa to 5.1MPa. When the radiation dose continues to increased from 300 to 900 KGy, the tensile strength increased from 2.3MPa to 6.4MPa and the tearing strength increased from 5.1MPa to 6.5MPa. During the process of radiation, the elongation at break had been kept down from 96% to 52%, and the hardness increased from 80A to 90A.


Sign in / Sign up

Export Citation Format

Share Document