The stability of sugar beet curly-top virus strains

1959 ◽  
Vol 10 (4) ◽  
pp. 359-363 ◽  
Author(s):  
N.J. Giddings
Plant Disease ◽  
2017 ◽  
Vol 101 (8) ◽  
pp. 1373-1382 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Imad A. Eujayl ◽  
William M. Wintermantel

Curly top of sugar beet is a serious, yield-limiting disease in semiarid production areas caused by Beet curly top virus (BCTV) and transmitted by the beet leafhopper. One of the primary means of control for BCTV in sugar beet is host resistance but effectiveness of resistance can vary among BCTV strains. Strain prevalence among BCTV populations was last investigated in Idaho and Oregon during a 2006-to-2007 collection but changes in disease severity suggested a need for reevaluation. Therefore, 406 leaf samples symptomatic for curly top were collected from sugar beet plants in commercial sugar beet fields in Idaho and Oregon from 2012 to 2015. DNA was isolated and BCTV strain composition was investigated based on polymerase chain reaction assays with strain-specific primers for the Severe (Svr) and California/Logan (CA/Logan) strains and primers that amplified a group of Worland (Wor)-like strains. The BCTV strain distribution averaged 2% Svr, 30% CA/Logan, and 87% Wor-like (16% had mixed infections), which differed from the previously published 2006-to-2007 collection (87% Svr, 7% CA/Logan, and 60% Wor-like; 59% mixed infections) based on a contingency test (P < 0.0001). Whole-genome sequencing (GenBank accessions KT276895 to KT276920 and KX867015 to KX867057) with overlapping primers found that the Wor-like strains included Wor, Colorado and a previously undescribed strain designated Kimberly1. Results confirm a shift from Svr being one of the dominant BCTV strains in commercial sugar beet fields in 2006 to 2007 to becoming undetectable at times during recent years.


Plant Disease ◽  
2016 ◽  
Vol 100 (7) ◽  
pp. 1364-1370 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Erik J. Wenninger ◽  
Imad A. Eujayl

Curly top in sugar beet caused by Beet curly top virus (BCTV) is an important yield-limiting disease that can be reduced via neonicotinoid and pyrethroid insecticides. The length of efficacy of these insecticides is poorly understood; therefore, field experiments were conducted with the seed treatment Poncho Beta (clothianidin at 60 g a.i. + beta-cyfluthrin at 8 g a.i. per 100,000 seed) and foliar treatment Asana (esfenvalerate at 55.48 g a.i./ha). A series of four experiments at different locations in the same field were conducted in 2014 and repeated in a neighboring field in 2015, with four treatments (untreated check, Poncho Beta, Asana, and Poncho Beta + Asana) which were arranged in a randomized complete block design with eight replications. To evaluate efficacy, viruliferous (contain BCTV strains) beet leafhoppers were released 8, 9, 10, or 11weeks after planting for each experiment, which corresponded to 1, 2, 3, and 4 weeks after Asana application. Over both years, in 30 of 32 observation dates for treatments with Poncho Beta and 14 of 16 observation dates for Asana, visual curly top ratings decreased an average of 41 and 24%, respectively, with insecticide treatments compared with the untreated check. Over both years, in eight of eight experiments for treatments with Poncho Beta and six of eight experiments for Asana, root yields increased an average of 39 and 32%, respectively, with treatment compared with the untreated check. Over both years, the Poncho Beta treatments increased estimated recoverable sucrose (ERS) yield by 75% compared with the untreated check for weeks 8 and 9. By week 10, only the Poncho Beta + Asana treatment led to increases in ERS in both years, while the influence of increasing host resistance may have made other treatments more difficult to separate. When considering curly top symptoms, root yield, and ERS among all weeks and years, there was a tendency for the insecticides in the Poncho Beta + Asana treatment to complement each other to improve efficacy.


2005 ◽  
pp. 134-138
Author(s):  
Kinga Diána Ungai ◽  
Zoltán Győri

Producing sugar beet, as it is a demanding field crop, has contributed to the raising standard of plant production. It has an outstanding place among the plants that are cultivated in the intensive plant production system. Rentability of sugar manufacture is determined by the stability of yield and the quality (saccharose content) of sugar beet. In this way, the fundamental interest both of the producers and the processing industry is high yield and quality, year by year. The yield and the quality of the sugar beet are mainly determined by the plant production system, so we studied the effect of fertilization, irrigation and plant protection.


Currently, implementation of the breeding programs, including the commonly recognized areas and classic breeding methods, cannot sufficiently ensure a quick and significant increase in the productivity of sugar beet hybrids, since its gene pool is almost exhausted. Based on the achievements in the field of genetics, new approaches to and opportunities in creating highly productive agrocoenoses of sugar beet have become popular. As a result of many years of work, results have been obtained about the nature of inheriting the resistance to glyphosate in individual heterozygous apo- and syncarpous forms in case of inbreeding and pair mating with the MC tester. The expression of target genes in the generations was monitored by the survival rate of sugar beet plants after the treatment with glyphosate. During the research, individuals with a high level of gene expression were selected. Upon self-pollination of initial heterozygous original forms, deviations from Mendelian segregation were observed in most cases. The criterion for assessing the stability of expression of glyphosate resistance genes in case of seed breeding was the compliance with the laws of Mendel among the analyzed descendants. In the initial stages of the research, the level of stability gene expression had been 10 – 15 % of the total number of analyzed plants. After four self-pollinations, the stability gene expression significantly increased, and genotypes with the resistance of 91 – 100 % were selected. The first apo- and syncarpous self-pollinating lines of sugar beet with high tolerance in the role of resistance donors have been created. The positive results of preliminary tests of the first glyphosate-tolerant hybrids need confirmation. Seeds and roots of resistant forms have been obtained for further research.


2021 ◽  
Author(s):  
Hiroaki Matsuhira ◽  
Kazuyoshi Kitazaki ◽  
Katsunori Matsui ◽  
Keisi Kubota ◽  
Yosuke Kuroda ◽  
...  

Abstract The stability of cytoplasmic male sterility expression in several genetic backgrounds was investigated in sugar beet (Beta vulgaris L.). Nine genetically heterogenous plants from old cultivars were crossed with a cytoplasmic male-sterile line to obtain 266 F1 plants. Based on marker analysis using a multiallelic DNA marker linked to restorer-of-fertility 1 (Rf1), we divided the F1 plants into 15 genotypes. We evaluated the phenotypes of the F1 plants under two environmental conditions: greenhouse rooms with or without daytime heating during the flowering season. Three phenotypic groups appeared: those consistently expressing male sterility (MS), those consistently having restored pollen fertility, and those expressing MS in a thermo-sensitive manner. All plants in the consistently male-sterile group inherited a specific Rf1 marker type named p4. We tested the potential for thermo-induced male-sterile plants to serve as seed parents for hybrid seed production, and three genotypes were selected. Open pollination by a pollen parental line with a dominant trait of red-pigmented hypocotyls and leaf veins resulted in seed setting on thermo-induced male-sterile plants, indicating that their female organs were functional. More than 99.9% of the progeny expressed the red pigmentation trait; hence, highly pure hybrids were obtained. We determined the nucleotide sequences of Rf1 from the three genotypes: one had a novel allele and two had known alleles, of which one was reported to have been selected previously as a nonrestoring allele at a single US breeding station but not at other stations in the US, or in Europe or Japan, suggesting environmental sensitivity.


Plant Disease ◽  
2019 ◽  
Vol 103 (8) ◽  
pp. 2083-2089 ◽  
Author(s):  
John J. Weiland ◽  
Kathrin Bornemann ◽  
Jonathan D. Neubauer ◽  
Mohamed F. R. Khan ◽  
Melvin D. Bolton

Beet necrotic yellow vein virus (BNYVV) is the causal agent of rhizomania, a disease of global importance to the sugar beet industry. The most widely implemented resistance gene to rhizomania to date is Rz1, but resistance has been circumvented by resistance-breaking (RB) isolates worldwide. In an effort to gain greater understanding of the distribution of BNYVV and the nature of RB isolates in Minnesota and eastern North Dakota, sugar beet plants were grown in 594 soil samples obtained from production fields and subsequently were analyzed for the presence of BNYVV as well as coding variability in the viral P25 gene, the gene previously implicated in the RB pathotype. Baiting of virus from the soil with sugar beet varieties possessing no known resistance to rhizomania resulted in a disease incidence level of 10.6% in the region examined. Parallel baiting analysis of sugar beet genotypes possessing Rz1, the more recently introgressed Rz2, and with the combination of Rz1 + Rz2 resulted in a disease incidence level of 4.2, 1.0, and 0.8%, respectively. Virus sequences recovered from sugar beet bait plants possessing resistance genes Rz1 and/or Rz2 exhibited reduced genetic diversity in the P25 gene relative to those recovered from the susceptible genotype while confirming the hypervariable nature of the coding for amino acids (AAs) at position 67 and 68 in the P25 protein. In contrast to previous reports, we did not find an association between any one specific AA signature at these positions and the ability to circumvent Rz1-mediated resistance. The data document ongoing virulence development in BNYVV populations to previously resistant varieties and provide a baseline for the analysis of genetic change in the virus population that may accompany the implementation of new resistance genes to manage rhizomania.


Plant Disease ◽  
2006 ◽  
Vol 90 (3) ◽  
pp. 252-258 ◽  
Author(s):  
Sh. Farzadfar ◽  
R. Pourrahim ◽  
A. R. Golnaraghi ◽  
A. Ahoonmanesh

The main areas for field-grown sugar beet (Beta vulgaris) production in Iran were surveyed to study the occurrence and incidence of Alfalfa mosaic virus (AlMV), Beet curly top virus (BCTV), Beet mosaic virus (BtMV), Beet western yellows virus (BWYV), Beet yellows virus (BYV), Chickpea chlorotic dwarf virus (CpCDV), Cucumber mosaic virus (CMV), and Turnip mosaic virus (TuMV) during the growing season of 2001. A total of 5,292 random leaf samples in addition to 1,294 symptomatic leaves were collected from nine commercial sugar beet growing provinces of Iran and tested by tissue-blot immunoassay (TBIA). Serological diagnoses were confirmed by electron microscopy and host range studies. The highest virus incidence among the surveyed provinces was recorded in Qazvin, followed by Fars, Esfahan, Azarbayejan-e-gharbi, Khorasan, Kermanshah, Semnan, and Hamedan. According to the TBIA results, viruses in decreasing order of incidence in sugar beet were BCTV (27.9%), followed by BWYV (17.4%), CpCDV (12.5%), BYV (10.6%), BtMV (7.4%), TuMV (2.9%), AlMV (1.3%), and CMV (1.2%). Nearly 35% of sugar beets in Iran were infected by one or both of the two leafhopper-transmitted viruses (BCTV and CpCDV). Moreover, about 28% were infected by at least one of the six aphid-transmitted viruses (AlMV, BWYV, BtMV, BYV, CMV, and TuMV). Overall, one or more of the eight viruses assayed were detected in 45.5% of the plants surveyed. Several plants (35%) displaying virus-like symptoms did not react with the virus antisera used, suggesting that more viruses or virus-like agents are infecting sugar beets in Iran. In reference to the earlier reports, this is the first report of AlMV and TuMV in sugar beet fields of Iran. Also, this is the first detection of CpCDV as a pathogen of sugar beet.


2009 ◽  
Vol 99 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Li-Fang Chen ◽  
Robert L. Gilbertson

Curly top disease (CTD) of vegetable crops is caused by viruses in the genus Curtovirus (family Geminiviridae). Cucurbits are reported to be susceptible to CTD; however, the disease is rare in California despite annual outbreaks in other hosts (e.g., common bean, pepper, sugar beet, and tomato). Consistent with these observations, no obvious curly top symptoms were observed in melon fields surveyed for CTD in Central California in 2004 and 2005, whereas the disease was readily observed in tomato plants in nearby fields. However, samples of cucurbits from Idaho with curly top-like symptoms, collected in 2005 and 2007, were confirmed to have the disease. The susceptibility of cucurbits (cantaloupe, honeydew melon, pumpkin, and watermelon) to the three curtoviruses known to occur in California (Beet curly top virus, BCTV; Beet severe curly top virus, BSCTV; and Beet mild curly top virus, BMCTV) was evaluated by agroinoculation or leafhopper transmission. Irrespective of the curtovirus species and inoculation method, low rates of infection and mild or symptomless disease phenotypes were observed in cucurbits. In contrast, all inoculated tomato, Nicotiana benthamiana, or shepherd's purse plants were infected and developed severe symptoms. In leafhopper transmission experiments, BMCTV infected cucurbits when leafhoppers acquired the virus from a symptomatic host with a high viral titer (shepherd's purse), whereas no infection occurred when the acquisition host had mild symptoms and a low viral titer (sugar beet); in contrast, the acquisition host did not influence transmission of BMCTV to tomato or shepherd's purse (all plants were infected). This revealed an influence of the acquisition host on leafhopper transmission in a host-specific manner. Our results also indicate that, although cucurbits can develop CTD, they are relatively poor hosts for these curtoviruses.


Sign in / Sign up

Export Citation Format

Share Document