scholarly journals Electroless and Electrodeposition of Silver from a Choline Chloride-Based Ionic Liquid

Author(s):  
Muhammad Rostom Ali ◽  
Muhammad Ziaur Rahman ◽  
Siddhartha Sankar Saha

The electroless and electrolytic deposition of silver from a solution containing silver nitrate in either an ethylene glycol (EG)-choline chloride based or a urea-choline chloride based ionic liquids has been carried out onto steel and copper cathodes by simple immersion, constant current and constant potential methods at room temperature. It has been found that electroless silver deposits of up to several micronshave been obtained by dip coating from both urea and EG based ionic liquids without the use of catalysts. The influences of various experimental conditions on electrodeposition and morphology of the deposited layers have been investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It has been observed that crack free bright metallic coloured silver coatings can be obtained from both EG and urea based ionic liquids at the applied deposition potentials up to -0.40 V and applied deposition current densities up to -5.0 A m-2 at room temperature. The cathodic current efficiency for the deposition of Ag is about 99%.

2018 ◽  
Vol 20 (28) ◽  
pp. 19160-19167 ◽  
Author(s):  
Miguel A. Montiel ◽  
José Solla-Gullón ◽  
Vicente Montiel ◽  
Carlos M. Sánchez-Sánchez

The number of publications devoted to studying electrochemical reactions in room temperature ionic liquids (RTILs) is constantly growing, but very few of them have been devoted to defining proper experimental conditions to obtain reproducible electrochemical results.


2009 ◽  
Vol 87 (4) ◽  
pp. 201-207 ◽  
Author(s):  
A. P. Abbott ◽  
J. C. Barron ◽  
K. S. Ryder

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haizhong Wang ◽  
Zenghong Song ◽  
Dan Qiao ◽  
Dapeng Feng ◽  
Jinjun Lu

The tribological performance of Si3N4ball sliding against Ti3SiC2disc lubricated by lithium-based ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (RT) and elevated temperature (100°C). Glycerol and the conventional imidazolium-based IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (L-F106) were used as references under the same experimental conditions. The results show that the lithium-based ILs had higher thermal stabilities than glycerol and lower costs associated with IL preparation than L-F106. The tribotest results show that the lithium-based ILs were effective in reducing the friction and wear of Si3N4/Ti3SiC2contacts. [Li(urea)]TFSI even produced better tribological properties than glycerol and L-F106 both at RT and 100°C. The SEM/EDS and XPS results reveal that the excellent tribological endurance of Si3N4/Ti3SiC2contacts lubricated by lithium-based ILs was mainly attributed to the formation of surface protective films composed of various tribochemical products.


2020 ◽  
Author(s):  
Christopher Rudolf ◽  
Corey Love ◽  
Marriner Merrill

Abstract Electrolytes for lithium ion batteries which work over a wide range of temperatures are of interest in both research and applications. Unfortunately, most traditional electrolytes are unstable at high temperatures. As an alternative, solid state electrolytes are sometimes used. These are inherently safer because they have no flammable vapors, and solid state electrolytes can operate at high temperatures, but they typically suffer from very low conductivity at room temperatures. Therefore, they have had limited use. Another option which has been previously explored is the use of ionic liquids. Ionic liquids are liquid salts, with nominally zero vapor pressure. Many are liquid over the temperature of interest (20–200°C). And, there is a tremendous range of available chemistries that can be incorporated into ionic liquids. So, ionic liquids with chemistries that are compatible with lithium ion systems have been developed and demonstrated experimentally at room temperature. In this study, we examined a silicon-lithium battery cycling at room temperature and over 150°C. Using half-cell vial and split-cell structures, we examined a standard electrolyte (LiPF6) at room temperature, and an ionic liquid electrolyte (1-ethyl-3-methylimidazolium bis(trifluorosulfonyl)imide) at room temperature and up to ∼150°C. The ionic liquid used was a nominally high purity product purchased from Sigma Aldrich. It was selected based on results reported in the open literature. The anode used was a wafer of silicon, and the cathode used was an alumina-coated lithium chip. The cells were cycled either 1 or 5 times (charge/discharge) in an argon environment at constant current of 50 μA between 1.5 and 0.05 volts. The results for the study showed that at room temperature, we could successfully cycle with both the standard electrolyte and the lithium ion electrolyte. As expected, there was large-scale fracture of the silicon wafer with the extent of cracking having some correlation with first cycle time. We were unable to identify any electrolyte-specific change in the electrochemical behavior between the standard electrolyte and the ionic liquid at room temperature. Although the ionic liquid was successfully used at room temperature, when the temperature was increased, it behaved very differently and no cells were able to successfully cycle. Video observations during cycling (∼1 day) showed that flocs or debris were forming in the ionic liquid and collecting on the electrode surface. The ionic liquid also discolored during the test. Various mechanisms were considered for this behavior, and preliminary tests will be presented. All materials were stable at room temperature, and the degradation appeared to be linked to the electrochemical process. As a conclusion, our working hypothesis is that, particularly at elevated temperatures, ionic liquid cleanliness and purity can be far more important than at room temperature, and small impurities can cause significant hurdles. This creates an important barrier to research efforts, because the “same” ionic liquids could cause failure in one situation and not in another due to impurities.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Hai-zhong Wang ◽  
Dan Qiao ◽  
Song-wei Zhang ◽  
Da-peng Feng ◽  
Jin-jun Lu

The tribological performance of Si3N4-Ti3SiC2contacts lubricated by alkylimidazolium dialkyl phosphates ionic liquids (ILs) was investigated using an Optimol SRV-IV oscillating reciprocating friction and wear tester at room temperature (25°C) and 100°C. Glycerol and tributyl phosphate (TBP) were also selected as lubricants for Si3N4-Ti3SiC2contacts to study the tribological properties under the same experimental conditions for comparison. Results show that the alkylimidazolium dialkyl phosphates ILs were effective in reducing the friction and wear for Si3N4-Ti3SiC2contacts, and their performance is superior to that of glycerol and TBP. The SEM/EDS and XPS results reveal that the excellent tribological endurance of alkylimidazolium dialkyl phosphates ILs is mainly attributed to the high load-carrying capacity of the ILs and the formation of surface protective films consisting of TiO2, SiOx, titanium phosphate, amines, and nitrogen oxides by the tribochemical reactions.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
QingSong Zhao ◽  
Yanna NuLi ◽  
Tuerxun Nasiman ◽  
Jun Yang ◽  
JiuLin Wang

The electrochemical performance of six imidazolium cation-based ionic liquids (ILs) containing 0.3 mol L-1Mg(CF3SO3)2as the electrolytes for magnesium deposition-dissolution was examined by cyclic voltammogramms and constant current discharge-charge techniques. Scanning electron microscopy and energy dispersive X-ray spectroscopy measurements were conducted to characterize the morphologies and components of the deposits. The cathodic satiability of imidazolium cations can be improved by increasing the length of alkyls at the 1-position and introducing methyl group at the 2-position of the imidazolium cations. A reversible magnesium deposition-dissolution can be achieved at room temperature. After adding appreciate amount of tetrahydrofuran (THF) organic solvent, the conductivity and the peak currents for Mg deposition and dissolution can be significantly improved. The potential polarization of deposition-dissolution process is decreased using Mg powder electrode.


2019 ◽  
Author(s):  
Zoi Salta ◽  
Agnie M. Kosmas ◽  
Marc E. Segovia ◽  
Martina Kieninger ◽  
Oscar Ventura ◽  
...  

This work reports density functional and composite model chemistry calculations performed on the reactions of toluene with the hydroxyl radical. Both experimentally observed H-abstraction from the methyl group and possible additions to the phenyl ring were investigated. Reaction enthalpies and heights of the barriers suggest that H-abstraction is more favorable than ●OH addition to the ring. The calculated reaction rates at room temperature and the radical-intermediate product fractions support this view. This is somehow contradictory with the fact that, under most experimental conditions, cresols are observed in a larger concentration than benzaldehyde. Since the accepted mechanism for benzaldehyde formation involves H-abstraction, a contradiction arises that begs for an explanation. In this first part of our work we give the evidences that support the preference of hydrogen abstraction over ●OH addition and suggest an alternative mechanism which shows that cresols can actually arise also from the former reaction and not only from the latter.


Sign in / Sign up

Export Citation Format

Share Document