scholarly journals Role of Automotive Industry in Global Warming

Author(s):  
Shahid Hussain Abro ◽  
Alidad Chandio ◽  
Iftikhar Ahmed Channa ◽  
Abdulaziz S. Alaboodi

Global warming and air pollution by human made gases such as CO2, is mainly produced by automotive industry that results in great risk for human health. The aim of this study is to reduce the above problem by using the high strength materials with low density in the manufacturing of automotive vehicles. An approach applied here is to enhance the strength by reducing the grain size, lowering the density and increasing elongation. Four steel samples with different chemical compositions were selected. Samples were heat treated from 850 °C to 1250 °C and cooled in water. Grain size distribution was calculated using matrox inspector software and result was plotted using origin. It was found that 850 °C has lowest and 1250 °C has highest grain sizes. Strength of steel can be increased not only by adding the alloying elements but also by controlling grain size. Light weight material consumes lower fuel and emits lower CO2, thus it minimizes the global warming and air pollution.  

2012 ◽  
Vol 706-709 ◽  
pp. 1568-1573 ◽  
Author(s):  
N. Yazdipour ◽  
D.P. Dunne ◽  
Elena V. Pereloma

The role of microstructure in susceptibility to hydrogen uptake and property degradation is being evaluated using a number of high strength pipeline steels. To do so, a cellular automaton (CA) model has been used to examine the effect of grain size, as a first step in assessing the influence of microstructure. The simulation results of hydrogen diffusion into microstructures with different grain sizes are presented.


Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


1996 ◽  
Vol 11 (11) ◽  
pp. 2725-2730 ◽  
Author(s):  
Eric M. Taleff ◽  
Mamoru Nagao ◽  
Yoshio Ashida ◽  
Oleg D. Sherby

An ultrahigh-carbon (1.25 wt.%) steel alloy containing 10 wt.% aluminum (UHCS–10Al) was processed by a powder metallurgy technique. Gas-atomized powders were subjected to ball-milling in an attritor in order to obtain a submicrometer grain size. Powder material was consolidated by both hot isostatic pressing (HIP) and by hot isopressure extrusion (HIE). Bulk material with submicrometer grain sizes was produced from attrited powders. The chemical composition and microstructure of this material are characterized at each processing step, from atomization through consolidation. Tensile tests show that a high strength results from the submicrometer grain size produced in the bulk material.


2021 ◽  
Vol 1035 ◽  
pp. 102-107
Author(s):  
Shao Ming Ma ◽  
Chuan Liu Wang ◽  
Yun Lin Fan

Light-weight and high-strength aluminum alloy drill pipes are potential and promising to replace traditional steel drill pipes. In this study, the grain size and mechanical properties of aluminum alloy drilling pipe materials reinforced by in-situ TiB2 particles were studied. The results showed when reinforced by in-situ TiB2 particles the grain size of aluminum alloy materials was refined from 155 m to 57 m and ultimate tensile strength was increased from 590 MPa to 720 MPa. Besides, the results also indicated that the friction coefficient was reduced from 0.99 to 0.50 and thus the abrasion resistance of 7075 aluminum alloy was enhanced by 34 %. This study provided theoretical basis for the application of light-weight and high-strength aluminum alloy drill pipes in directional drilling and ultra-deep wells.


2008 ◽  
Vol 584-586 ◽  
pp. 617-622 ◽  
Author(s):  
Josep Antonio Benito ◽  
Robert Tejedor ◽  
Rodriguez Rodríguez-Baracaldo ◽  
Jose María Cabrera ◽  
Jose Manuel Prado

Samples of nanostructured and ultrafine grained steels with carbon content ranging from 0.05 to 0.55%wt. have been obtained by a warm consolidation process from mechanically milled powders and subsequent heat treatments. In general, homogeneous grain size distributions were obtained except for the low-carbon steel in which a bimodal grain size distribution was observed when it was heat treated at high temperatures. The stress-strain response has been studied by means of compression tests. Nanostructured materials showed high strength but poor results in terms of ductility. In the low-ultrafine range (mean grain size between 100-500 nm) the three materials showed an increase in the ductility with strain softening. Finally, when the average grain size was close to 1 µm samples showed larger ductility and strain hardening.


Author(s):  
Shōichi MATSUDA ◽  
Tohru INOUE ◽  
Hiroshi MIMURA ◽  
Yoshihiro OKAMURA

2011 ◽  
Vol 1295 ◽  
Author(s):  
M H Loretto ◽  
Z. Wu ◽  
M Q Chu ◽  
D Hu

ABSTRACTThe factors which influence the ductility of cast samples of TiAl-based alloys are briefly reviewed with emphasis on alloys where microstructural refinement has been used in an attempt to improve ductility. The grain size in cast samples of different TiAl-based alloys can be refined either by high additions of about 1at% boron, or by lower additions of about 0.2at%. In addition it is possible to refine the microstructure by massively transforming samples and heat treating the transformed samples in the (alpha + gamma) phase field to precipitate alpha. Significantly different ductilities are found in different alloys with similar grain sizes or with similar microstructures and the origins of the improvements in ductility and of these differences are discussed in this paper. The role of alloying elements in influencing the degree of order in alpha 2 and in turn influencing slip in alpha 2 is discussed.


2012 ◽  
Vol 706-709 ◽  
pp. 55-60 ◽  
Author(s):  
Rustam Kaibyshev ◽  
Anna Mogucheva ◽  
Andrii Dubyna

It is shown that implementation of high strains through equal-channel angular pressing (ECAP) and/or rolling into alloys belonging to Al-Mg-Sc-Zr system allows achieving high strength and satisfactory ductility. It was shown that strain hardening gives a main contribution to overall strength increment attributed to intense plastic straining; the role of grain size hardening is minor. However, extensive grain refinement is a necessary condition for retaining sufficient ductility in full-hardened condition for these materials.


2021 ◽  
Vol 250 ◽  
pp. 05015
Author(s):  
Gulshan Noorsumar ◽  
Dmitry Vysochinskiy ◽  
Even Englund ◽  
Kjell G. Robbersmyr ◽  
Svitlana Rogovchenko

This paper deals with the undesired effects of the heat treatments on the mechanical properties of (UHSS) Ultra High Strength Steel used nowadays in automotive industry to improve crashworthiness performance of vehicles. The UHSS specimens were extracted from certain parts of the car body and subjected to different heat treatments. Four types of specimens were tested: untreated, welded with metal inert gas welding, heat treated at 800 °C, and heat treated at 1250 °C. All heat-treated specimens showed dramatically reduced values of strength. The results suggest that it is important to follow the official repair manuals avoiding unnecessary welding and improper heat treatments of UHSS. The experiments provide the data necessary for constructing a constitutive model and performing a finite-element analysis of improperly repaired UHSS parts.


Author(s):  
Dhinakaran V. ◽  
Varsha Shree M. ◽  
Swapna Sai M. ◽  
Rishiekesh Ramgopal

Additive manufacturing (AM) emerged from rapid prototyping to relinquish sustainable industrial production. The role of AM in the industrial field is to diminish manufacturing pace, functioning cost, and assembling the AM lightweight particles together, which enhances the malleable fabrication of personalized user defined components without symbolic concussion. The automotive manufacturing industry plays a chief role in the aggressive trade field where time to market declines. The engraving design structures with weight reduction materials are the demands faced by the automotive industry that can be ominously resolved by additive manufacturing technology. This research work provides a better understanding of AM technology and its role in automotive sector to enhance modern vehicle designs and enduring features and augments the knowledge of both researchers and industrialists to overcome the efficacy in manufacturing process by fabricating relatively high strength geometries with reduced weight.


Sign in / Sign up

Export Citation Format

Share Document