A vehicular traffic congestion predictor system using Mamdani fuzzy inference

2021 ◽  
Vol 1 (2) ◽  
pp. 49-57
Author(s):  
Mehran Amini ◽  
Miklos F. Hatwagner ◽  
Gergely Cs. Mikulai ◽  
Laszlo T. Koczy

The process of traffic control systems significantly relies on the immediate detection of breakdown states. As a result of their crisp (non-fuzzy) based calculation procedures, conventional traffic estimators and predictors cannot effectively model traffic states. In fact, these methods are characterized by exact features, while traffic is defined by uncertain variables with vague properties. Furthermore, typical numerical methodologies have constraints on evaluating the overall system status in heterogeneous and convoluted networks mainly due to the absence of reliable and real-time data. This study develops a fuzzy inference system that uses data from the Hungarian freeway networks for predicting the severity of congestion in this complex network. Congestion severity is considered the output variable, and traffic flow along with the length and the number of lanes of each section are assigned as input variables. Seventy-five fuzzy production rules were generated using accessible datasets, percentile distribution, and experts' consensus. The MATLAB fuzzy logic toolbox simulates the designed model and analysis steps. According to available resources, the results demonstrate linkages among input variables. Analyses are also used to construct intelligent traffic modeling systems and further service-related planning.

2021 ◽  
Vol 9 (1) ◽  
pp. 49
Author(s):  
Tanja Brcko ◽  
Andrej Androjna ◽  
Jure Srše ◽  
Renata Boć

The application of fuzzy logic is an effective approach to a variety of circumstances, including solutions to maritime anti-collision problems. The article presents an upgrade of the radar navigation system, in particular, its collision avoidance planning tool, using a decision model that combines dynamic parameters into one decision—the collision avoidance course. In this paper, a multi-parametric decision model based on fuzzy logic is proposed. The model calculates course alteration in a collision avoidance situation. First, the model collects input data of the target vessel and assesses the collision risk. Using time delay, four parameters are calculated for further processing as input variables for a fuzzy inference system. Then, the fuzzy logic method is used to calculate the course alteration, which considers the vessel’s safety domain and International Regulations for Preventing Collisions at Sea (COLREGs). The special feature of the decision model is its tuning with the results of the database of correct solutions obtained with the manual radar plotting method. The validation was carried out with six selected cases simulating encounters with the target vessel in the open sea from different angles and at any visibility. The results of the case studies have shown that the decision model computes well in situations where the own vessel is in a give-way position. In addition, the model provides good results in situations when the target vessel violates COLREG rules. The collision avoidance planning tool can be automated and serve as a basis for further implementation of a model that considers the manoeuvrability of the vessels, weather conditions, and multi-vessel encounter situations.


2019 ◽  
Vol 31 (2) ◽  
Author(s):  
Anika Nowshin Mowrin ◽  
Md. Hadiuzzaman ◽  
Saurav Barua ◽  
Md. Mizanur Rahman

Commuter train is a viable alternative to road transport to ease the traffic congestion which requires appropriate planning by concerned authorities. The research is aimed to assess passengers’ perception about commuter train service running in areas near Dhaka city. An Adaptive Neuro Fuzzy Inference System (ANFIS) model has been developed to evaluate service quality (SQ) of commuter train. Field survey data has been conducted among 802 respondents who were the regular user of commuter train and 12 attributes have been selected for model development. ANFIS was developed by the training and then tested by 80% and 20% of the total sample respectively. After that, model performance has been evaluated by (i) Confusion Matrix (ii) Root Mean Square Error (RMSE) and attributes are ranked based on their relative importance. The proposed ANFIS model has 61.50% accuracy in training and 47.80% accuracy in testing.  From the results, it is found that 'Bogie condition', 'Cleanliness', ‘Female harassment’, 'Behavior of staff' and 'Toilet facility' are the most significant attributes. This indicates that some necessary measures should be taken immediately to recover the effects of these attributes to improve the SQ of commuter train. 


2012 ◽  
Vol 42 (1) ◽  
pp. 166-171 ◽  
Author(s):  
Leandro Ferreira ◽  
Tadayuki Yanagi Junior ◽  
Wilian Soares Lacerda ◽  
Giovanni Francisco Rabelo

Cloacal temperature (CT) of broiler chickens is an important parameter to classify its comfort status; therefore its prediction can be used as decision support to turn on acclimatization systems. The aim of this research was to develop and validate a system using the fuzzy set theory for CT prediction of broiler chickens. The fuzzy system was developed based on three input variables: air temperature (T), relative humidity (RH) and air velocity (V). The output variable was the CT. The fuzzy inference system was performed via Mamdani's method which consisted in 48 rules. The defuzzification was done using center of gravity method. The fuzzy system was developed using MAPLE® 8. Experimental results, used for validation, showed that the average standard deviation between simulated and measured values of CT was 0.13°C. The proposed fuzzy system was found to satisfactorily predict CT based on climatic variables. Thus, it could be used as a decision support system on broiler chicken growth.


2011 ◽  
Vol 14 (1) ◽  
pp. 167-179 ◽  
Author(s):  
Vesna Ranković ◽  
Jasna Radulović ◽  
Ivana Radojević ◽  
Aleksandar Ostojić ◽  
Ljiljana Čomić

Predicting water quality is the key factor in the water quality management of reservoirs. Since a large number of factors affect the water quality, traditional data processing methods are no longer good enough for solving the problem. The dissolved oxygen (DO) level is a measure of the health of the aquatic system and its prediction is very important. DO dynamics are highly nonlinear and artificial intelligence techniques are capable of modelling this complex system. The objective of this study was to develop an adaptive network-based fuzzy inference system (ANFIS) to predict the DO in the Gruža Reservoir, Serbia. The fuzzy model was developed using experimental data which were collected during a 3-year period. The input variables analysed in this paper are: water pH, water temperature, total phosphate, nitrites, ammonia, iron, manganese and electrical conductivity. The selection of an appropriate set of input variables is based on the building of ANFIS models for each possible combination of input variables. Results of fuzzy models are compared with measured data on the basis of correlation coefficient, mean absolute error and mean square error. Comparing the predicted values by ANFIS with the experimental data indicates that fuzzy models provide accurate results.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2949
Author(s):  
Dimitra Papaki ◽  
Nikolaos Kokkos ◽  
Georgios Sylaios

A Mamdani-type fuzzy-logic model was developed to link Mediterranean seagrass presence to the prevailing environmental conditions. UNEP-WCMC (seagrass presence), CMEMS, and EMODnet (oceanographic/environmental) datasets, along with human-impact parameters were utilized for this expert system. The model structure and input parameters were tested according to their capacity to accurately predict the presence of seagrass families at specific locations. The optimum Fuzzy Inference System (FIS) comprised four input variables: water depth, sea surface temperature, nitrates, and bottom chlorophyll-a concentration, exhibiting reasonable precision (76%). Results illustrated that Posidoniaceae prefers cooler water (16–18 °C) with low chlorophyll-a levels (<0.2 mg/m3); Zosteraceae favors similarly cooler (16–18 °C) and mesotrophic waters (Chl-a > 0.2 mg/m3), but also slightly warmer (18–19.5 °C) with lower Chl-a levels (<0.2 mg/m3); Cymodoceaceae lives in warm, oligotrophic (19.5–21.0 °C, Chl-a < 0.3 mg/m3) to moderately warm mesotrophic sites (18–21.3 °C, 0.3–0.4 mg/m3 Chl-a). Finally, Hydrocharitaceae thrives in the warm Mediterranean waters (21–23 °C) of low chlorophyll-a content (<0.25 mg/m3). Climate change scenarios show that Posidoniaceae and Zosteraceae tolerate bathymetric changes, and Posidoniaceae and Zosteraceae are mostly affected by sea temperature rise, while Hydrocharitaceae exhibits tolerance at higher sea temperatures. This FIS could aid the protection of vulnerable seagrass ecosystems by national and regional policy-makers and public authorities.


2021 ◽  
Vol 10 (3) ◽  
pp. 679
Author(s):  
Febrina Sari ◽  
Desyanti Desyanti ◽  
Teuku Radillah ◽  
Siti Nurjannah ◽  
Julimar Julimar ◽  
...  

The doctor will determine the risk level of childhood obesity by using standard calculations, namely measuring the child's weight and height, and many other factors. Then the doctor will calculate the child's body mass index (BMI). The results of calculations made by the doctor will be compared with standard/normal values set by FAO/WHO, to obtain the level of risk of obesity in children. This study aims to analyze the risk level of obesity in children using the Sugeno method of Fuzzy Inference system, using the trapezoidal membership function and involving six input variables such as exercise habits, consumption of fast food, history of obesity of parents, and others. The application of the fuzzy inference system Sugeno method can help doctors to analyze the risk level of childhood obesity quickly and accurately with an accuracy rate of 85%. The results of the implementation of the Sugeno method of Fuzzy Inference system showed that out of 140 children who were the object of the study, 119 children received a diagnosis of the level of risk of obesity which was the same as the diagnosis made by a doctor.


Author(s):  
Jonata Jefferson Andrade ◽  
Leonardo Goliatt Da Fonseca ◽  
Michèle Farage ◽  
Geraldo Luciano de Oliveira Marques

Accurately forecast performance and durability is a critical issue for improving the design of new and existing pavements. The poor pavement performance increases traffic congestion, compromises safety, and raises maintenance costs due to frequent repairs. The resilient modulus is one of the most critical unbound material property inputs in several current pavement design procedures. Recent studies have addressed the problem of resilient modulus prediction using different methods, including computational intelligence approaches. In this paper, a hybrid intelligent system called ANFIS (Adaptive Neuro-Fuzzy Inference System) is used for predicting the resilient modulus from an experimental database of 270 distinct compositions. ANFIS achieved superior performance when estimating the resilient modulus of bituminous mixes, which can potentially save laboratory resources.


Author(s):  
Abdellah Draidi ◽  
Djamel Labed

<p>Load forecasting has many applications for power systems, including energy purchasing and generation, load switching, contract evaluation, and infrastructure development.</p> <p>Load forecasting is a complex mathematical process characterized by random data and a multitude of input variables.To solve load forecasting, two different approaches are used, the traditional and the intelligent one.Intelligent systems have proved their efficiency in load forecasting domain.</p> <p>Adaptive neuro-fuzzy inference systems (ANFIS) are a combination of two intelligent techniques where we can get neural networks and fuzzy logics advantages simultaneously.</p> In this paper, we will forecast night load peak of Algerian power system using multivariate input adaptive neuro-fuzzy inference system (ANFIS) introducing the effect of the temperature and type of the day as input variables.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 832
Author(s):  
Xuguang Zhang ◽  
Qinan Yu ◽  
Yuxi Wang

Crowd video monitoring and analysis is a hot topic in computer vision and public management. The pre-evaluation of crowd safety is beneficial to the prediction of crowd status to avoid the occurrence of catastrophic events. This paper proposes a method to evaluate crowd safety based on fuzzy inference. Pedestrian’s number and distribution uniformity are considered in a fuzzy inference system as two kinds of attributes of a crowd. Firstly, the pedestrian’s number is estimated by the number of foreground pixels. Then, the distribution uniformity of a crowd is calculated using distribution entropy by dividing the monitoring scene into several small areas. Furthermore, through the fuzzy operation, the fuzzy system is constructed by using two input variables (pedestrian’s number and distribution entropy) and one output variable (crowd safety status). Finally, inference rules between the crowd safety state and the pedestrian’s number and distribution uniformity are constructed to obtain the pre-evaluation of the safety state of the crowd. Three video sequences extracted from different scenes are used in the experiment. Experimental results show that the proposed method can be used to evaluate the safety status of the crowd in a monitoring scene.


Sign in / Sign up

Export Citation Format

Share Document