scholarly journals Growth, Gas Exchanges and Maize Productivity Under Potassic Fertilizer Management and Residual Response on Bean

2019 ◽  
Vol 7 (2) ◽  
pp. 1
Author(s):  
João Everthon da Silva Ribeiro ◽  
Manoel Felix da Silva Neto ◽  
José Marcelino da Silva Júnior ◽  
Manoel Bandeira de Albuquerque ◽  
Guilherme Silva de Podestá ◽  
...  

Potassium (K) is the second nutrient of greater absorption by plants, and it is of fundamental importance for the development of the cultures and acts in the activation of enzymes that participate in the photosynthetic processes. However, there are still doubts about its residual effect on crop succession. Therefore, the objective of the research was to evaluate the effect of K doses on growth, gas exchange and maize yield and its residual effect on bean culture. The experiment was a randomized complete block design, in a 5x2 factorial scheme, totaling 10 treatments, with five K doses (0, 50, 100, 150 and 200 kg ha-1) and two fertilization periods (seeding and V5 stadium) in maize plants. Growth parameters, gas exchange and yield were evaluated in maize plants, and growth was evaluated in Bean plants in an experimental area belonging to the Department of Plant Science and Environmental, Federal University of Paraíba in Northeast Brazil. For the analysis of the data, we performed the analysis of variance, according to the design adopted. Subsequently, the data were submitted to regression analysis, with curve fitting, according to the parameters evaluated. Results revealed that, K fertilization influenced the growth of maize plants in the two fertilization periods (seeding and V5 stadium) at 45 and 75 days after planting, as well as in gas exchange and productivity. Fertilization at the V5 stadium in maize presented higher values compared to fertilization at seeding, in which the dose of 150 kg ha-1 presented the best results at both planting times. In relation to the residual effect of K on bean growth, it was verified that, there was influence of the doses on the growth of plants, in which the dose of 200 kg ha-1 recorded the highest values. The results showed that there is the residual response of K on bean cultivation in succession with maize. For the greater development of maize, it is recommended to use the dose of 150 kg ha-1 at the V5 stage of plants.

2019 ◽  
Vol 11 (9) ◽  
pp. 83
Author(s):  
Jackson de M. Alves ◽  
Alex S. de Lima ◽  
Cesenildo de F. Suassuna ◽  
Francisco R. A. Figueiredo ◽  
Toshik Iarley da Silva ◽  
...  

Zucchini (Cucurbita pepo L.) is a horticultural crop of great socioeconomic importance in Brazil and in the world. However, inappropriate fertilization management, such as over-fertilization of soils, may become a limiting factor for its development. Thus, the aim of this study was to evaluate the morpho-physiological behavior of zucchini submitted to nitrogen (N) doses applied via soil and foliar application of silicon (Si). The treatments were distributed in split-plot scheme in a randomized block design, with three replications. The plot was formed by silicon levels (0.0 and 6.0 g plant-1) and the subplots constituted by five nitrogen levels (30, 60, 90, 120 and 150 kg ha-1), adding up to 30 experimental units. Gas exchanges and growth parameters were assessed at 35 days after planting. The data were submitted to analysis of variance by the F test and in the cases of significance was performed a polynomial regression analysis for the nitrogen factor and Tukey test for the silicon factor. The supply of Si positively enhances the effects of N on growth characteristics and gas exchanges of zucchini. The simultaneous application of Si and N does not influence the leaf area of zucchini. The N dose of 93.9 kg ha-1 provides greater assimilation of CO2 in zucchini plants under the conditions in which the experiment was performed.


2020 ◽  
Vol 33 (3) ◽  
pp. 633-643
Author(s):  
AUREANE CRISTINA TEIXEIRA FERREIRA CÂNDIDO ◽  
MARCO ANTONIO CAMILLO DE CARVALHO ◽  
RICARDO ADRIANO FELITO ◽  
ADRIANO MALTEZO DA ROCHA ◽  
OSCAR MITSUO YAMASHITA

ABSTRACT Co-inoculation consists of using microorganism combinations with synergic effect that surpass the results obtained with their use alone. The objective of this work was to evaluate the effect of inoculation and co-inoculation on soybean plants, and their residual effect on maize plants grown intercropped with ruzigrass (Urochloa ruziziensis), under different N fertilizer rates. The experiment was conducted at the experimental area of the Mato Grosso State University, Alta Floresta campus, in a Typic Hapludox. A randomized block design was used for the soybean crops; the treatments consisted of Bradyrhizobium japonicum inoculated single, or co-inoculated with Azospirillum brasilense, with 20 replications. A randomized block design in a strip-plot arrangement was used for the winter maize-ruzigrass intercrop (WMRI); the treatments consisted of combination of residual effect of inoculation and co-inoculation in the strips, and five N fertilizer rates (0, 50, 100, 150, and 200 kg ha-1) in plots with WMRI, with four replications. The co-inoculation of soybean seeds and its residual effect on the maize crops increased the root dry weight of plants of both crops; however, no increases were found for most vegetative and reproductive characteristics of maize plants. Yield and most characteristics evaluated had increasing linear responses to increases in N rates, indicating the plants could respond to rates above 200 kg ha-1.


Author(s):  
I. R. Danbima ◽  
I. J. Tekwa ◽  
A. T. Gani

Purpose: The aim of the study was to assess the effects of groundnut shell incorporation rates on the growth and yield of maize. Research methods: The study was carried out at the students’ demonstration farm of the Federal Polytechnic, Mubi, Adamawa State, in 2018. Seeds were sown on a prepared land treated with four (4) doses of groundnut shells (0, 25, 50 and 75 tons/ha) arranged in a randomized complete block design (RCBD), replicated 4 times. Each plot was marked out at 2.0 m length × 2.0 m width with 0.5 m gap between the replicated plots and blocks. Maize growth parameters were determined at 2, 4, 6 and 8 weeks after sowing and maize yield parameters were determined at 10 and 12 weeks after sowing (WAS). Findings: The groundnut shell application rates increased maize growth parameters such as, plant height, number of leaves per plant, leave area index, and stem girth, number of cobs per plant and cobs weight. The results revealed that plant height, number of leaves, leaf area index and stem girth were significantly (P≤ 0.05) influenced by the treatments, except for the control treatment at 2- WAS. The higher application rates (50 and 75 t/ha) of groundnut shell significantly (P≤ 0.05) influenced the plant growth components better than the 25 and 0 t/ha treatment rates. Research limitations: There were no limitations to report. Originality/Value: The results suggests that groundnut shell incorporation rate at 50 t/ha could be recommended as the most appropriate and profitable for high performance of maize plants in Mubi. The results generally suggest that maize plants may tolerate even higher rates of groundnut shell incorporation beyond the rates used in the study.


Bragantia ◽  
2012 ◽  
Vol 71 (1) ◽  
pp. 90-97 ◽  
Author(s):  
Maria Anita Gonçalves da Silva ◽  
Anny Rosi Mannigel ◽  
Antonio Saraiva Muniz ◽  
Simone Maria Altoé Porto ◽  
Marlene Estevão Marchetti ◽  
...  

The objectives of this work were to evaluate the management of N and S (as ammonium sulphate) fertilization under no-tillage system on the components of maize productivity and on N and S accumulation in the crop, as well as to evaluate the minimum value of the Nitrogen Sufficiency Index (NSI 0.95) as an indicator for side dressing requirements. The experiment had a completely randomized block design with six treatments and four replications carried out in Red Latosol dystrophic soil (Hapludox), in Campo Mourão, Paraná State, where the following treatments in summer growth maize were applied: T1- 120 kg ha-1 N in seeding; T2- 120 kg ha-1 N in side dressing; T3- 40 kg ha-1 N in seeding and 80 kg ha-1 N in side dressing; T4- 30 kg ha-1 N in seeding and 90 kg ha-1 N in side dressing, monitored by a chlorophyll meter using the Nitrogen Sufficiency Index (NSI); T5- 120 kg ha-1 N anticipated in wheat seeding; T6- without nitrogen fertilization. NSI was determined by the relationship between the leaf chlorophyll index (ICF) average of T4 plants and that one in the plot fertilized with 120 kg ha-1 N at the maize seed sowing (T1). During two years, ammonium sulphate was applied to the maize crop after wheat under no tillage system. In the first year, with adequate rainfall, the maize yield was similar to the one in which the complete ammonium sulphate dose application was done in maize seeding and side dressing. The anticipated fertilization to wheat seed sowing resulted in maize yield without difference from the parceled form. In the second year, with irregular rainfall, all treatments with N were similar and they increased maize yield compared to that without N fertilization. NSI of 0.95 was not efficient to evaluate maize N requirements in side dressing, and resulted in lower maize yield. N was accumulated mainly in the grains unlike S that accumulated in the plant shoots; both were highly correlated to maize productivity.


Author(s):  
José R. I. Silva ◽  
Eduardo Souza ◽  
Maurício L. de M. V. Leite ◽  
Genival Barros Junior ◽  
Aldo T. Sales ◽  
...  

ABSTRACT Graywater is an alternative method to increase the water supply for agricultural production in semi-arid regions. The objective of this study was to evaluate the effects of different irrigation depths of graywater on the gas exchanges and phytomass of millet plants with and without organic fertilization. The research was conducted under greenhouse conditions in Serra Talhada municipality in semiarid region of Brazil, in a randomized complete block design with a factorial (4 × 2 + 1) plot and three replicates. The first factor corresponded to graywater irrigation depth equivalent to 25, 50, 75 and 100% of the available water content of the soil, and the second factor was the addition of bovine manure as fertilizer (0 and 34 Mg ha-1), and a control (irrigation with low-salinity water). Irrigation with graywater effluent did not promote adverse effects on gas exchanges and phytomass accumulation; however, it also did not provide enough nutrients to promote increase in these variables. The reduction in irrigation depth caused a decrease in gas exchange from 45 days after the application of the treatments. The basal tiller mass was the most favored plant component due to organic fertilization.


2020 ◽  
Vol 9 (1) ◽  
pp. 71-80
Author(s):  
Joshua Benjamin ◽  
Sifau Adenike Adejumo ◽  
Abiodun Claudius-Cole

Crops grown on the field or in phytotrons are faced with different biotic stresses including plant-parasitic nematodes (PPNs) and abiotic stresses such as drought and poor soil fertility (low nitrogen levels). In this study, the interactive responses of a low-nitrogen tolerant variety LNTP-YC6 and a regular variety BR-9928-DMRSR to Pratylenchus zeae under four nitrogen-levels: no amendment; [T0], low nitrogen [100kgN/ha NPK; T1], optimum nitrogen [200kgN/ha NPK + Urea; T2] and compost [10t/ha; T3] were investigated. The treatments were arranged in a 2 x 4 factorial fitted into randomised complete block design (RCBD) with four replicates. Data were collected on growth parameters (plant height and stem girth), yield components (number and weight of cobs), lesion score (LS), final nematode population (FNP) and reproductive factor (RF). Low nutrient stress in combination with nematode infection generally reduced maize growth and yield. Growth parameters of BR-9928-DMRSR variety were generally high while yield parameters of LNTP-YC6 variety were significantly greater than in BR-9928-DMRSR variety. However, T2 and T3 improved growth and yield of both maize varieties compared to T0, with T2 being superior to T3. Meanwhile, T3 reduced FNP more than T2. FNP (107.65) and RF (1.3) of P. zeae on LNTP-YC6 variety and with T3 was significantly low compared to T2 (178, 3.34), T0 (188, 3.6) and T1 (217, 5.0). In all the parameters considered, LNTP-YC6 outperformed BR-9928-DMRSR variety. In conclusion, soil amendment with optimum rate of nitrogen and compost reduced nematode population and enhanced maize growth, while low nitrogen in combination with nematode stress reduced maize yield.


2012 ◽  
Vol 42 (10) ◽  
pp. 1731-1737 ◽  
Author(s):  
Felipe de Sousa Barbosa ◽  
Claudivan Feitosa de Lacerda ◽  
Hans Raj Gheyi ◽  
Gabriel Castro Farias ◽  
Ricardo José da Costa Silva Júnior ◽  
...  

Irrigation with water containing salt in excess can affect crop development. However, management strategies can be used in order to reduce the impacts of salinity, providing increased efficiency in the use of good quality water. The objective of this research was to study the effects of use of high salinity water for irrigation, in continuous or cyclic manner, on vegetative growth, yield, and accumulation of ions in maize plants. Two experiments were conducted during the months from October to January of the years 2008/2009 and 2009/2010, in the same area, adopting a completely randomized block design with four replications. Irrigation was performed with three types of water with electrical conductivities (ECw) of 0.8 (A1), 2.25 (A2) and 4.5 (A3) dS m-1, combined in seven treatments including the control with low salinity water (A1) throughout the crop cycle (T1). Saline waters (A2 and A3) were applied continuously (T2 and T5) or in a cyclic way, the latter being formed by six irrigations with A1 water followed by six irrigations by eitherA2 or A3 water, starting with A1 at sowing (T3 and T6) or 6 irrigations with A2 or A3 water followed by 6 irrigations with A1 water (T4 and T7) . The use of low and high salinity water resulted in lower accumulation of potentially toxic ions (Na and Cl) and improvement in the Na/K balance in the shoots of maize plants. Application of saline water in a cyclic way also allows the substitution of about 50% of water of low salinity in irrigation, without negative impacts on maize yield.


2016 ◽  
Vol 34 (1) ◽  
pp. 133-141 ◽  
Author(s):  
D.V. SILVA ◽  
M.A.M. FREITAS ◽  
M.F. SOUZA ◽  
G.P. QUEIROZ ◽  
C.A.D. MELO ◽  
...  

The success of the intercropping among cultivated species depends on the adoption of practices that provide, in due course, greater competitive ability of a species over another. The objective of this study was to evaluate the use of glyphosate herbicide in the suppression of Brachiaria (signalgrass) intercropped with maize. The experiment was conducted in a randomized complete block design with four replications. The treatments were arranged in a 5 x 2 + 2 factorial arrangement, the first factor corresponding to the doses of glyphosate (48, 96, 144, 240, 480 g ha-1 of the acid equivalent (a.e)) and the second one to the vegetative stages of the signalgrass at the time of application (2 and 4 tillers). Two controls were added to the treatment list, comprising controls without herbicide application and hand removal of the signalgrass. The number of plants, tillers and dry matter of signalgrass was reduced with glyphosate. The increase of the glyphosate doses enhanced the injure to the forage plants, mainly when the compound was sprayed at the two-tiller vegetative stage. The dry matter of maize plants increased proportionally to the glyphosate dose. However, the height of the maize plants was not affected. The grain mass and productivity of maize grain increased with increasing dose of glyphosate. The maize yield was negatively influenced on the untreated control. Glyphosate at 96 and 144 g ha-1, when applied at 2 and 4 tiller stage, respectively, reduces the growth of signalgrass and does not affect the maize grain yield.


2020 ◽  
Vol 1 (1) ◽  
pp. 12-17
Author(s):  
Srijana Pandey ◽  
Sapana Parajuli ◽  
Biplov Oli ◽  
Surya Dhungana

The research was conducted at Beltari Sandhikharka-10, Arghakhanchi district to study about the effect of various doses of boron on growth and yield attributing characters of cauliflower (Brassica oleracea var. botrytis) during off-season from February to June in 2020. Five treatments; B0 (control/no application), B1: 2kg/ha, B2: 4kg/ha, B3: 6kg/ha, B4: 8kg/ha which are the different doses of boron application were laid out in Randomized Complete Block Design (RCBD) with 4 replications. The growth parameters like plant height, number of leaves per plant leaf length and leaf breadth of largest leaf were recorded multiple times with 15 days interval. Days to curd initiation and Days from curd initiation to harvest were recorded by regular field observation. The yield parameters; curd weight with leaves, Marketable curd weight, average curd yield, incidence of hollowing were recorded during harvest. The economics from application of boron doses in cauliflower production was obtained in terms of cost of cultivation, gross returns, net returns, and benefit cost ratio. The result showed that the growth and yield attributing characters of cauliflower were significantly affected by application of boron in which the value of these parameters was found significantly higher in B1 followed by other treatments. The average curd yield of cauliflower in B1 was found to be 12.39 mt/ha which was 48.92% higher than that of B0 with curd yield 8.32 mt/ha. Similarly, the net return was found significantly the highest in B1 and the lowest in B0. The result showed that application of boron in the range of 2-4 kg/ha is preferred to control and higher doses in respect of both productivity and economics.


2020 ◽  
Vol 57 (4) ◽  
pp. 302-309
Author(s):  
Sukanta Pal ◽  
Megha Sana ◽  
Hirak Banerjee ◽  
Lhingneikim Lhungdim

Effect of nitrogen and bio-fertilizer on growth and productivity of hybrid rice (cv. PHB 71) was assessed during dry seasons of 2017 and 2018 at Research Farm of BCKV under new alluvial zone of West Bengal. The experiment was laid out in factorial randomized block design with 12 treatment combinations having 4 levels of N and 3 types of bio-fertilizer replicated thrice. Application at 180 kg N/ha produced tallest plants at 90 DAT with maximum LAI (60 DAT), DMA (90 DAT), tillers/hill (90 DAT) and CGR (30-60 & 60-90 DAT). The same N rate resulted in highest panicles/m2, panicle length, panicle weight, filled grains/panicle and 1000-grain weight. A decrease in N dose from 180 to 150 kg/ha caused reduction in all those yield components; however, the variation was non-significant except for number of panicles/m2. Maximum grain yield, straw yield and harvest index was also achieved with 180 kg N/ha accounting 120.1, 34.9 and 32.8% more than the values obtained with zero-N; however, it was statistically at par with the yields and HI obtained with 150 kg N/ha. The Azospirillum application increased all the growth parameters, yield components and yield of hybrid rice over other tested bio-fertilizers (Azospirillum > PSB > K mobilizer), accounting 5.9 and 8.8% more than the yields obtained with PSB and K mobilizer. The interaction of N and bio-fertilizer exerted significant effect on growth attributes but failed to record any significant variations in yield components and yield of hybrid rice. The maximum economic benefit was achieved with combined application of 180 kg N/ha and Azospirillum.


Sign in / Sign up

Export Citation Format

Share Document