scholarly journals Experimental Study of the Bearing Capacity of Stiff Clay Overlying Sand with and without Geotextile Inclusion

2021 ◽  
Vol 9 (3) ◽  
pp. 119-126
Author(s):  
Bahga Mustafa ◽  
Ahmed M. Elsharief

The objective of this study is to investigate the potential benefits of using reinforcement inclusion to improve the bearing capacity of stiff clay over very loose to medium dense sand. Model load tests were performed on two layered systems, namely stiff clay over very loose, loose, medium dense sand with and without geotextile inclusion between the two layers and on stiff clay only. The load-settlement curves were plotted from the experimental test results, and the ultimate bearing capacity was obtained using Log – Log (L-L), Tangent (TIM), 0.1B and Hyperbolic (HYP) methods. Theoretical approaches were used to compute the ultimate bearing capacities of the tests without and with reinforcement. The test results have shown an increase in the ultimate bearing capacities due to increase in the relative densities of the bottom sand layer. The bearing capacity increased significantly with the inclusion of geotextile layer. The bearing capacity ratio (BCR) for the case of very loose sand as bottom layer was the highest compared to loose and medium dense cases. Load - settlement curve of the pure clay test plots above or is identical to the load - settlement curve of stiff clay overlying medium dense sand with geotextile layer. The maximum benefit for the geotextile inclusion was gained at large strain when the sand was very loose. The analytical methods were generally in good agreement with the experimental model test results obtained by the 0.1B method.  

Author(s):  
B. Panigrahi ◽  
P. K. Pradhan

Abstract An experimental study has been carried out to improve the bearing capacity of soils by using geotextile. In the present study geojute (gunny bags) is used as geotextile, whereas sand is used as soil media. This research presents the results of laboratory load tests on model square footings supported on reinforced sand beds. A total of 32 load tests are conducted to evaluate the effects of single layer reinforcement placed below square model footings. Parameters of testing programme of the research are the depth of reinforcement, the plan area of reinforcement and the footing size. The test results indicated that the maximum gain in ultimate bearing capacity (UBC) of footings on reinforced soil (by using geojute) is found to be increased by a factor of 3.37 as compared to soil without geojute. Also, the optimum size of reinforcement is found to be 3.5B × 3.5B irrespective of the type of reinforcing materials used. The optimum placement position of geotextile is found to be 0.5B from the base of the footing. At low settlement rates, the study on the values of BCR reveals almost the same results with regard to optimum depth and size of reinforcement mentioned above. It is found that with increase in the settlement rate, BCR increases. Also, the improvement in bearing capacity is found to increase with increase in footing size.


2011 ◽  
Vol 255-260 ◽  
pp. 2751-2755
Author(s):  
Chun Lei Zhang ◽  
Qing Song Liu ◽  
Jin Bao Liu

In order to improve the bearing capacity of dredged sediment dump pond for succeeding foundation reinforcement construction, upper layer was placed with a layer of cement solidified crust (CSC). For the special double layer foundation, field plate load tests were conducted to study the behaviors of failure mode, deformation and ultimate bearing capacity. Test results show the failure mode of the double layer foundation takes punch failure mode, the settlement around 10-15cm, the failure angle around 33-36 degree, the ultimate bearing capacities have a lineal relationship with the unconfined compressive strength and thickness of CSC, respectively.


1981 ◽  
Vol 18 (2) ◽  
pp. 297-300 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of rigid vertical and batter piles and pile groups in clay has been determined under various inclinations of the load, varying from the vertical to horizontal directions. The results of load tests on single model piles of different lengths and inclinations and on free-standing groups and piled foundations are compared with theoretical estimates. The influence of load inclination on the bearing capacity can be represented by simple interaction relationships between the axial and normal components of the ultimate load. The effect of eccentricity of the load on the ultimate bearing capacity of pile groups is discussed on the basis of previous theory and model test results.


1994 ◽  
Author(s):  
K.A. Al-Shafei ◽  
W.R. Cox ◽  
S.C. Helfrich

1982 ◽  
Vol 19 (3) ◽  
pp. 392-396 ◽  
Author(s):  
A. M. Hanna

The ultimate bearing capacity of footings resting on subsoils consisting of a weak sand layer overlying a strong deposit has been investigated. Based on model tests of strip and circular footings in a loose or compact sand layer overlying a dense sand deposit, the classical equation of bearing capacity of footings on homogeneous sand was extended to cover cases of these footings in layered sands where the upper layer is the weaker. The theory compared well with the available model test results. Design charts are presented.


2020 ◽  
Vol 10 (7) ◽  
pp. 2315
Author(s):  
Myoung-Soo Won ◽  
Christine P. Langcuyan ◽  
Yu-Cong Gao

The Saemangeum seawall, located on the western coast of Korea, is 33.8 km long and is known as the longest embankment in the world. The Saemangeum project is underway for road, railway, and port constructions for internal development. In the Saemangeum area, suitable granular soil for embankment material is difficult to obtain. However, silty clay is widely distributed. In this study, a series of model-bearing capacity tests were conducted as a basic study for using clayey soils as embankment materials. The model bearing capacity tests were carried out using a standard metal mold and a customized metal box. The test results showed that clayey soil, with normal moisture content (NMC), exhibited a large deformation and low bearing capacity. However, when the clay was well-compacted, with optimum moisture content (OMC), it exhibited a higher bearing capacity than dense sand. In addition, when crushed gravel and composite geotextiles were placed in the clayey soil with NMC, the bearing capacity was higher than that of dense sand. From the viewpoint of the bearing capacity, it is considered that clayey soil can be used as an embankment material when clay, crushed gravel, and composite geotextiles are properly combined.


Author(s):  
Nikhil Koratkar

Purified multiwalled carbon nanotubes are dispersed in polycarbonate matrices using a novel solution mixing technique and dynamic load tests are performed to characterize the storage and loss modulus. Tests are also performed with pristine polycarbonate (no carbon fillers), to compare the response of the two materials. The test results indicate that as the strain amplitude is increased, the storage modulus decreases in conjunction with an increase in the loss modulus. This suggests that at large strain levels the adhesion between the nanotubes and polymer is not strong enough to prevent interfacial slip, resulting in frictional sliding at the tube-polymer interfaces. This debonding at the filler-matrix interface is responsible for the observed decrease in storage modulus and increase in loss modulus. The nanotube-polymer sliding energy dissipation mechanism shows potential to reliably and efficiently deliver high levels of structural damping to polymer structures.


2011 ◽  
Vol 243-249 ◽  
pp. 2389-2394
Author(s):  
Ying Lu Diao ◽  
Guo Liang Dai ◽  
Wei Ming Gong

Static load tests were carried out with Osterberg method on 3 bored piles formed in Liao River Bridge. Bearing capacity, base resistance and frictional resistance were obtained before and after base grouting. Based on the test results, the ultimate bearing capacities of piles were increased for 14.74%~43.87%, that of pile bases were increased for 89.57% ~ 163.49% and the frictional resistances were most increased for 31.20%. The pile bearing behavior was improved. Not only base resistances were improved after grouting, but also frictional resistances were improved by bettering the characteristics of soils and interfaces between piles and soils. After grouting, pile base resistance ratio of pile bearing capacity increased, and some frictional piles changed into end-bearing frictional piles. The frictional resistance of lower pile increased more than that of upper pile after grouting. The slurry penetration height of base grouting had a certain range, which was affected by quantity of mortar intrusion, grouting technology, grouting pressure and geological structure.


2021 ◽  
Vol 30 (2) ◽  
Author(s):  
Kexin Zhang ◽  
Tianyu Qi ◽  
Zhimin Zhu ◽  
Xingwei Xue

In this paper, a new polyurethane-cement composite (PUC) material is used to reinforce a 25-year hollow slab bridge. PUC material is composed of polyurethane and cement, which has good mechanical properties. After pouring PUC material at the bottom of the hollow slabs, the traffic can be restored in a short time. Ultimate bearing capacity was discussed based on the concrete structures. The failure mode of the reinforced beam depends on the PUC material. The strengthening process includes surface treatment of concrete, formwork erection and polyurethane cement pouring. In order to verify the effectiveness of PUC reinforced bridges, load tests were carried out before and after reinforcement. The test results showed that PUC could remove the bridge load and increase the stiffness of the hollow slabs.


1974 ◽  
Vol 11 (2) ◽  
pp. 223-229 ◽  
Author(s):  
G. G. Meyerhof

The ultimate bearing capacity of footings resting on subsoils consisting of two layers has been investigated for the cases of dense sand on soft clay and loose sand on stiff clay. The analyses of different modes of soil failure are compared with the results of model tests on circular and strip footings and some field observations of foundation failures.


Sign in / Sign up

Export Citation Format

Share Document