scholarly journals REVIEW OF THE TRADITIONAL USES, PHYTOCHEMISTRY, TOXICOLOGY AND PHARMACOLOGY OF FENUGREEK (TRIGONELLA FOENUM-GRAECUM L.): AN IMPORTANT MEDICINAL PLANT IN UNANI MEDICINE

2021 ◽  
Vol 14 (2) ◽  
Author(s):  
Shabnam Anjum Ara ◽  
Shaheen Akhlaq ◽  
Mohammad Fazil ◽  
Usama Akram ◽  
Bilal Ahmad ◽  
...  

Background: Trigonella foenum-graecum L. with common name fenugreek, is a very popular spice as well as an important herb of traditional Unani medicine. It is one of the most promising herbs having nutritional as well as medicinal value, used for the treatment of an extensive range of ailments. Objective: The aim ofthe review isto present the traditional uses, phytochemistry, toxicology in the light of Unani medicine as well as contemporary researchesto comprehend itsimportance. Methods: The literature was collected from classical Unani textssuch as Khazain al-Advia, Makhzan al-Advia, Muhit-i-Azam, Al-Jami li Mufradat al- Advia wa'l Aghziya, Al Qanoon Fit Tib etc., and scientific data from published experimental and clinical studies were searched from search engines like Scopus, Web of science, Embase, Google scholar, Pub Med etc. Results: Phytochemical studies have led to the isolation of different compounds such as alkaloid, flavonoids, saponin, volatile contents, gum and fibre. Fresh plant ingredients such as seed, leaves etc, crude extracts and isolated constituents of fenugreek showed a wide spectrum of in vitro and in vivo studies that embrace its hypoglycaemic, anti-inflammatory, antioxidant, and cytotoxic activities. Conclusion: With its vast mode of action, it influences in multiple ways in treatment of the diseases and the present review revealed its therapeutic potential and status. For future research prospects, the need of further studies involving mechanisms of action on scientific parameters is essential.

Author(s):  
Sajeesha Sasi ◽  
Nishat Anjum ◽  
Y. C. Tripathi

Flacourtia jangomas (Lour.) Raeusch., a small tree of Willow family distributed throughout tropical regions of East Africa and Asia is well-known for its culinary and medicinal uses. The plant has received increasing interest due to its limonoid constituents. Phytochemical studies have led to the isolation and characterization of an array of bioactive compounds and pharmacological investigations have validated the traditional uses of the species as well as discovered some new bioefficacies. The aim of the review is to present an updated and comprehensive overview of traditional uses, ethnomedicinal significance, phytochemical and pharmacological aspects of F. jangomas to highlight its ethnopharmacological use and to explore its therapeutic potentials thereby providing a basis for future research. Relevant information and literature on F. jangomas from electronic databases such as Academic Journals, Google, Google Scholar, PubMed, Web of Science, and Science Direct were consulted and analyzed. Available literatures evidently demonstrate that F. jangomas possess a wide spectrum of pharmacological activities that could be explained by the presence of varied range of chemical constituents. Phytochemical and pharmacological investigations showed that extracts of different parts and major active components of F. jangomas had antimicrobial, analgesic, antidiabetic, antidiarrheal, antioxidant and cytotoxic activities. This emphasizes the need for further investigation to explore more bioactive chemical constituents and new bioefficacies of the plant and to establish a credible relationship between molecular structure and activity of compounds.


2015 ◽  
Vol 2015 ◽  
pp. 1-29 ◽  
Author(s):  
Muhammad Ali Hashmi ◽  
Afsar Khan ◽  
Muhammad Hanif ◽  
Umar Farooq ◽  
Shagufta Perveen

Aim of the Review.To grasp the fragmented information available on the botany, traditional uses, phytochemistry, pharmacology, and toxicology ofOlea europaeato explore its therapeutic potential and future research opportunities.Material and Methods.All the available information onO. europaeawas collected via electronic search (using Pubmed, Scirus, Google Scholar, and Web of Science) and a library search.Results.Ethnomedical uses ofO. europaeaare recorded throughout the world where it has been used to treat various ailments. Phytochemical research had led to the isolation of flavonoids, secoiridoids, iridoids, flavanones, biophenols, triterpenes, benzoic acid derivatives, isochromans, and other classes of secondary metabolites fromO. europaea. The plant materials and isolated components have shown a wide spectrum ofin vitroandin vivopharmacological activities like antidiabetic, anticonvulsant, antioxidant, anti-inflammatory, immunomodulatory, analgesic, antimicrobial, antiviral, antihypertensive, anticancer, antihyperglycemic, antinociceptive, gastroprotective, and wound healing activities.Conclusions. O. europaeaemerged as a good source of traditional medicine for the treatment of various ailments. The outcomes of phytochemical and pharmacological studies reported in this review will further expand its existing therapeutic potential and provide a convincing support to its future clinical use in modern medicine.


Author(s):  
Vijay Kumar

: Mimosa pudica Linn is an integrated part of Traditional Medicines Systems of India, China, Africa, Korea and America. It has been used from centuries in traditional medicines to cure different diseases like fever, diabetes, constipation, jaundice, ulcers, biliousness, and dyspepsia. It is an important ingredient of wide class of herbal formulations. To assess the scientific evidence for therapeutic potential of Mimosa pudica Linn and to identify the gaps for future research. The available information on the ethno-medicinal uses, phytochemistry, pharmacology and toxicology of Mimosa pudica Linn was collected via a library and electronic searches in Sci-Finder, Pub-Med, Science Direct, Google Scholar for the period, 1990 to 2020. In traditional medicinal systems, variety of ethno-medicinal applications of Mimosa pudica Linn has been noticed. Phytochemical investigation has resulted in identification of 40 well known chemical constituents, among which alkaloids, phenols and flavionoids are the predominant groups. The crude extracts and isolates have exhibited a wide spectrum of in vitro and in vivo pharmacological activities including anti-cancer, anti-inflammation, osteoporosis, neurological disorders, hypertension etc.. To quantify the Mimosa pudica Linn and its formulations, analytical techniques like HPLC and HPTLC has shown dominancy with good range of recovery and detection limit. Mimosa pudica Linn is the well-known herb since an ancient time. The pharmacological results supported some of the applications of Mimosa pudica Linn in traditional medicine systems. Perhaps, the predominance of alkaloids, phenols and flavionoids are responsible for the pharmacological activities the crude extracts and isolates of Mimosa pudica Linn. Further, there is need to isolate and evaluate the active chemical constituents of Mimosa pudica Linn having significant medicinal values. In future, it is important to study the exact mechanism associated with the phytochemicals of Mimosa pudica Linn especially on anti-cancer activities. Notably, toxicity studies on Mimosa pudica Linn are limited which are to be explored in future for the safe application of Mimosa pudica Linn and its formulations.


Molecules ◽  
2019 ◽  
Vol 24 (20) ◽  
pp. 3679 ◽  
Author(s):  
Fan ◽  
Zhang ◽  
Luo ◽  
Wang ◽  
Tang ◽  
...  

Limonin is a natural tetracyclic triterpenoid compound, which widely exists in Euodia rutaecarpa (Juss.) Benth., Phellodendron chinense Schneid., and Coptis chinensis Franch. Its extensive pharmacological effects have attracted considerable attention in recent years. However, there is no systematic review focusing on the pharmacology, toxicity, and pharmacokinetics of limonin. Therefore, this review aimed to provide the latest information on the pharmacology, toxicity, and pharmacokinetics of limonin, exploring the therapeutic potential of this compound and looking for ways to improve efficacy and bioavailability. Limonin has a wide spectrum of pharmacological effects, including anti-cancer, anti-inflammatory and analgesic, anti-bacterial and anti-virus, anti-oxidation, liver protection properties. However, limonin has also been shown to lead to hepatotoxicity, renal toxicity, and genetic damage. Moreover, limonin also has complex impacts on hepatic metabolic enzyme. Pharmacokinetic studies have demonstrated that limonin has poor bioavailability, and the reduction, hydrolysis, and methylation are the main metabolic pathways of limonin. We also found that the position and group of the substituents of limonin are key in affecting pharmacological activity and bioavailability. However, some issues still exist, such as the mechanism of antioxidant activity of limonin not being clear. In addition, there are few studies on the toxicity mechanism of limonin, and the effects of limonin concentration on pharmacological effects and toxicity are not clear, and no researchers have reported any ways in which to reduce the toxicity of limonin. Therefore, future research directions include the mechanism of antioxidant activity of limonin, how the concentration of limonin affects pharmacological effects and toxicity, finding ways to reduce the toxicity of limonin, and structural modification of limonin—one of the key methods necessary to enhance pharmacological activity and bioavailability.


2021 ◽  
Vol 12 (2) ◽  
pp. 185-189
Author(s):  
Rachana Lodhi ◽  
Pradeep Kumar Mohanty

Croton bonplandianum L. (Euphorbiaceae) has been widely used in traditional medicine for a wide range of ailments likejaundice, acute constipation, abdominal dropsy, dysentery, external wounds, hypercholesterolemia, hypertension, and infectious disorders. This aim of the present study is to comprehend the fragmented information available on the traditional uses, phytochemistry, pharmacology of C. bonplandianum to explore its therapeutic potential and futureresearch opportunities. All the available information on C. bonplandianum was collected via electronic search (using Google Scholar, Scopus, Pubmed, and SciFinder) and a library search. Traditional uses of C. bonplandianum are recorded throughout the Asia and South America, where it has been usedfor about various types of disease. The research on bioactive compounds had led to the isolation of diterpenes, alkaloids, flavonoids, steroid glycosides, volatile componentsand some other classes of secondary metabolites fromC. bonplandianum. Extracts and bioactive constituents of C. bonplandianum exhibited a wide range of pharmacological activitieslike, hepatoprotective, anti-inflammatory, antifungal, wound healing, antimicrobial, antioxidant, and anti-tumor.C. bonplandianum emerged as a rich source of traditional medicine for the treatment of various disease although variousin vitro and in vivo studies validated its traditional medicinal uses. 


2020 ◽  
Vol 26 ◽  
Author(s):  
Kondeti Ramudu Shanmugam ◽  
Bhasha Shanmugam ◽  
Gangigunta Venkatasubbaiah ◽  
Sahukari Ravi ◽  
Kesireddy Sathyavelu Reddy

Background : Diabetes is a major public health problem in the world. It affects each and every part of the human body and also leads to organ failure. Hence, great progress made in the field of herbal medicine and diabetic research. Objectives: Our review will focus on the effect of bioactive compounds of medicinal plants which are used to treat diabetes in India and other countries. Methods: Information regarding diabetes, oxidative stress, medicinal plants and bioactive compounds were collected from different search engines like Science direct, Springer, Wiley online library, Taylor and francis, Bentham Science, Pubmed and Google scholar. Data was analyzed and summarized in the review. Results and Conclusion: Anti-diabetic drugs that are in use have many side effects on vital organs like heart, liver, kidney and brain. There is an urgent need for alternative medicine to treat diabetes and their disorders. In India and other countries herbal medicine was used to treat diabetes. Many herbal plants have antidiabetic effects. The plants like ginger, phyllanthus, curcumin, aswagandha, aloe, hibiscus and curcuma showed significant anti-hyperglycemic activities in experimental models and humans. The bioactive compounds like Allicin, azadirachtin, cajanin, curcumin, querceitin, gingerol possesses anti-diabetic, antioxidant and other pharmacological properties. This review focuses on the role of bioactive compounds of medicinal plants in prevention and management of diabetes. Conclusion: Moreover, our review suggests that bioactive compounds have the potential therapeutic potential against diabetes. However, further in vitro and in vivo studies are needed to validate these findings.


Author(s):  
Aaron M. Farrelly ◽  
Styliani Vlachou ◽  
Konstantinos Grintzalis

Epilepsy is a neurological disorder mainly characterised by recurrent seizures that affect the entire population diagnosed with the condition. Currently, there is no cure for the disease and a significant proportion of patients have been deemed to have treatment-resistant epilepsy (TRE). A patient is deemed to have TRE if two or more antiepileptic drugs (AEDs) fail to bring about seizure remission. This inefficacy of traditional AEDs, coupled with their undesirable side effect profile, has led to researchers considering alternative forms of treatment. Phytocannabinoids have long served as therapeutics with delta-9-THC (Δ9-THC) receiving extensive focus to determine its therapeutic potential. This focus on Δ9-THC has been to the detriment of analysing the plethora of other phytocannabinoids found in the cannabis plant. The overall aim of this review is to explore other novel phytocannabinoids and their place in epilepsy treatment. The current review intends to achieve this aim via an exploration of the molecular targets underlying the anticonvulsant capabilities of cannabidiol (CBD), cannabidavarin (CBDV), delta-9-tetrahydrocannabivarin (Δ9-THCV) and cannabigerol (CBG). Further, this review will provide an exploration of current pre-clinical and clinical data as it relates to the aforementioned phytocannabinoids and the treatment of epilepsy symptoms. With specific reference to epilepsy in young adult and adolescent populations, the exploration of CBD, CBDV, Δ9-THCV and CBG in both preclinical and clinical environments can guide future research and aid in the further understanding of the role of phytocannabinoids in epilepsy treatment. Currently, much more research is warranted in this area to be conclusive.


Sign in / Sign up

Export Citation Format

Share Document