Simulate the Wind Speed of Some Meteorological Variables the Source of Power Generation

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 366
Author(s):  
Yang Xia ◽  
Yun Tian ◽  
Lanbin Zhang ◽  
Zhihao Ma ◽  
Huliang Dai ◽  
...  

We present an optimized flutter-driven triboelectric nanogenerator (TENG) for wind energy harvesting. The vibration and power generation characteristics of this TENG are investigated in detail, and a low cut-in wind speed of 3.4 m/s is achieved. It is found that the air speed, the thickness and length of the membrane, and the distance between the electrode plates mainly determine the PTFE membrane’s vibration behavior and the performance of TENG. With the optimized value of the thickness and length of the membrane and the distance of the electrode plates, the peak open-circuit voltage and output power of TENG reach 297 V and 0.46 mW at a wind speed of 10 m/s. The energy generated by TENG can directly light up dozens of LEDs and keep a digital watch running continuously by charging a capacitor of 100 μF at a wind speed of 8 m/s.


2013 ◽  
Vol 2 (2) ◽  
pp. 69-74 ◽  
Author(s):  
A.K. Rajeevan ◽  
P.V. Shouri ◽  
Usha Nair

A wind turbine generator output at a specific site depends on many factors, particularly cut- in, rated and cut-out wind speed parameters. Hence power output varies from turbine to turbine. The objective of this paper is to develop a mathematical relationship between reliability and wind power generation. The analytical computation of monthly wind power is obtained from weibull statistical model using cubic mean cube root of wind speed. Reliability calculation is based on failure probability analysis. There are many different types of wind turbinescommercially available in the market. From reliability point of view, to get optimum reliability in power generation, it is desirable to select a wind turbine generator which is best suited for a site. The mathematical relationship developed in this paper can be used for site-matching turbine selection in reliability point of view.


2021 ◽  
Vol 11 (4) ◽  
pp. 1776
Author(s):  
Young Seo Kim ◽  
Han Young Joo ◽  
Jae Wook Kim ◽  
So Yun Jeong ◽  
Joo Hyun Moon

This study identified the meteorological variables that significantly impact the power generation of a solar power plant in Samcheonpo, Korea. To this end, multiple regression models were developed to estimate the power generation of the solar power plant with changing weather conditions. The meteorological data for the regression models were the daily data from January 2011 to December 2019. The dependent variable was the daily power generation of the solar power plant in kWh, and the independent variables were the insolation intensity during daylight hours (MJ/m2), daylight time (h), average relative humidity (%), minimum relative humidity (%), and quantity of evaporation (mm). A regression model for the entire data and 12 monthly regression models for the monthly data were constructed using R, a large data analysis software. The 12 monthly regression models estimated the solar power generation better than the entire regression model. The variables with the highest influence on solar power generation were the insolation intensity variables during daylight hours and daylight time.


2021 ◽  
Vol 11 (23) ◽  
pp. 11221
Author(s):  
Ji Won Yoon ◽  
Sujeong Lim ◽  
Seon Ki Park

This study aims to improve the performance of the Weather Research and Forecasting (WRF) model in the sea breeze circulation using the micro-Genetic Algorithm (micro-GA). We found the optimal combination of four physical parameterization schemes related to the sea breeze system, including planetary boundary layer (PBL), land surface, shortwave radiation, and longwave radiation, in the WRF model coupled with the micro-GA (WRF-μGA system). The optimization was performed with respect to surface meteorological variables (2 m temperature, 2 m relative humidity, 10 m wind speed and direction) and a vertical wind profile (wind speed and direction), simultaneously for three sea breeze cases over the northeastern coast of South Korea. The optimized set of parameterization schemes out of the WRF-μGA system includes the Mellor–Yamada–Nakanishi–Niino level-2.5 (MYNN2) for PBL, the Noah land surface model with multiple parameterization options (Noah-MP) for land surface, and the Rapid Radiative Transfer Model for GCMs (RRTMG) for both shortwave and longwave radiation. The optimized set compared with the various other sets of parameterization schemes for the sea breeze circulations showed up to 29 % for the improvement ratio in terms of the normalized RMSE considering all meteorological variables.


Author(s):  
Hermes Ulises Ramirez-Sanchez ◽  
Alma Delia Ortiz-Bañuelos ◽  
Aida Lucia Fajardo-Montiel

Meteorological factors such as temperature, humidity, atmospheric pressure, wind speed and direction are associated with the dispersion of the SARS-CoV-2 virus through aerosols, particles <5μm are suspended in the air being infective at least three hours and dispersing from eight to ten meters. It has been shown that a 10-minute conversation, an infected person produces up to 6000 aerosol particles, which remain in the air from minutes to hours, depending on the prevailing weather conditions. Objective: To establish the correlation between meteorological variables, confirmed cases and deaths from COVID-19 in the 3 most important cities of Mexico. Methodology: A retrospective ecological study was conducted to evaluate the correlation of meteorological factors with COVID-19 cases and deaths in three Mexican cities. Results: The correlations between health and meteorological variables show that in the CDMX the meteorological variables that best correlate with the health variables are Temperature (T), Dew Point (DP), Wind speed (WS), Atmospheric Pressure (AP) and Relative Humidity (RH) in that order. In the ZMG are T, WS, RH, DP and AP; and in the ZMM are RH, WS, DP, T and AP. Conclusions In the 3 Metropolitan Areas showed that the meteorological factors that best correlate with the confirmed cases and deaths from COVID-19 are the T, RH; however, the correlation coefficients are low, so their association with health variables is less than other factors such as social distancing, hand washing, use of antibacterial gel and use of masks.


2021 ◽  
Vol 21 (2) ◽  
pp. 831-851
Author(s):  
Kevin J. Sanchez ◽  
Bo Zhang ◽  
Hongyu Liu ◽  
Georges Saliba ◽  
Chia-Li Chen ◽  
...  

Abstract. Marine biogenic particle contributions to atmospheric aerosol concentrations are not well understood though they are important for determining cloud optical and cloud-nucleating properties. Here we examine the relationship between marine aerosol measurements (with satellites and model fields of ocean biology) and meteorological variables during the North Atlantic Aerosols and Marine Ecosystems Study (NAAMES). NAAMES consisted of four field campaigns between November 2015 and April 2018 that aligned with the four major phases of the annual phytoplankton bloom cycle. The FLEXible PARTicle (FLEXPART) Lagrangian particle dispersion model is used to spatiotemporally connect these variables to ship-based aerosol and dimethyl sulfide (DMS) observations. We find that correlations between some aerosol measurements with satellite-measured and modeled variables increase with increasing trajectory length, indicating that biological and meteorological processes over the air mass history are influential for measured particle properties and that using only spatially coincident data would miss correlative connections that are lagged in time. In particular, the marine non-refractory organic aerosol mass correlates with modeled marine net primary production when weighted by 5 d air mass trajectory residence time (r=0.62). This result indicates that non-refractory organic aerosol mass is influenced by biogenic volatile organic compound (VOC) emissions that are typically produced through bacterial degradation of dissolved organic matter, zooplankton grazing on marine phytoplankton, and as a by-product of photosynthesis by phytoplankton stocks during advection into the region. This is further supported by the correlation of non-refractory organic mass with 2 d residence-time-weighted chlorophyll a (r=0.39), a proxy for phytoplankton abundance, and 5 d residence-time-weighted downward shortwave forcing (r=0.58), a requirement for photosynthesis. In contrast, DMS (formed through biological processes in the seawater) and primary marine aerosol (PMA) concentrations showed better correlations with explanatory biological and meteorological variables weighted with shorter air mass residence times, which reflects their localized origin as primary emissions. Aerosol submicron number and mass negatively correlate with sea surface wind speed. The negative correlation is attributed to enhanced PMA concentrations under higher wind speed conditions. We hypothesized that the elevated total particle surface area associated with high PMA concentrations leads to enhanced rates of condensation of VOC oxidation products onto PMA. Given the high deposition velocity of PMA relative to submicron aerosol, PMA can limit the accumulation of secondary aerosol mass. This study provides observational evidence for connections between marine aerosols and underlying ocean biology through complex secondary formation processes, emphasizing the need to consider air mass history in future analyses.


2015 ◽  
Vol 33 (3) ◽  
pp. 477 ◽  
Author(s):  
Nadja Gomes Machado ◽  
Marcelo Sacardi Biudes ◽  
Carlos Alexandre Santos Querino ◽  
Victor Hugo De Morais Danelichen ◽  
Maísa Caldas Souza Velasque

ABSTRACT. Cuiab´a is located on the border of the Pantanal and Cerrado, in Mato Grosso State, which is recognized as one of the biggest agricultural producers of Brazil. The use of natural resources in a sustainable manner requires knowledge of the regional meteorological variables. Thus, the objective of this study was to characterize the seasonal and interannual pattern of meteorological variables in Cuiab´a. The meteorological data from 1961 to 2011 were provided by the Instituto Nacional de Meteorologia (INMET – National Institute of Meteorology). The results have shown interannual and seasonal variations of precipitation, solar radiation, air temperature and relative humidity, and wind speed and direction, establishing two main distinct seasons (rainy and dry). On average, 89% of the rainfall occurred in the wet season. The annual average values of daily global radiation, mean, minimum and maximum temperature and relative humidity were 15.6 MJ m–2 y–1, 27.9◦C, 23.0◦C, 30.0◦C and 71.6%, respectively. Themaximum temperature and the wind speed had no seasonal pattern. The wind speed average decreased in the NWdirectionand increased in the S direction.Keywords: meteorological variables, climatology, ENSO. RESUMO. Cuiabá está localizado na fronteira do Pantanal com o Cerrado, no Mato Grosso, que é reconhecido como um dos maiores produtores agrícolas do Brasil. A utilização dos recursos naturais de forma sustentável requer o conhecimento das variáveis meteorológicas em escala regional. Assim, o objetivo deste estudo foi caracterizar o padrão sazonal e interanual das variáveis meteorológicas em Cuiabá. Os dados meteorológicos de 1961 a 2011 foram fornecidos pelo Instituto Nacional de Meteorologia (INMET). Os resultados mostraram variações interanuais e sazonais de precipitação, radiação solar, temperatura e umidade relativa do ar e velocidade e direção do vento, estabelecendo duas principais estações distintas (chuvosa e seca). Em média, 89% da precipitação ocorreu na estação chuvosa. Os valores médios anuais de radiação diária global, temperatura do ar média, mínima e máxima e umidade relativa do ar foram 15,6 MJ m–2 y–1, 27,9◦C, 23,0◦C, 30,0◦C e 71,6%, respectivamente. A temperatura máxima e a velocidade do vento não tiveram padrão sazonal. A velocidade média do vento diminuiu na direção NW e aumentou na direção S.Palavras-chave: variáveis meteorológicas, climatologia, ENOS.


Sign in / Sign up

Export Citation Format

Share Document