scholarly journals Novel adaptation of the AxiEM electromagnetic neuronavigation system for intraoperative tracking of neuroendoscope during intraventricular surgery

Author(s):  
Rachana Tyagi ◽  
Smit Shah
2017 ◽  
Vol 158 ◽  
pp. 93-97 ◽  
Author(s):  
Vianney Gilard ◽  
Nicolas Magne ◽  
Emmanuel Gerardin ◽  
Sophie Curey ◽  
Valérie Pelletier ◽  
...  

Author(s):  
Jair Leopoldo Raso

Abstract Introduction The precise identification of anatomical structures and lesions in the brain is the main objective of neuronavigation systems. Brain shift, displacement of the brain after opening the cisterns and draining cerebrospinal fluid, is one of the limitations of such systems. Objective To describe a simple method to avoid brain shift in craniotomies for subcortical lesions. Method We used the surgical technique hereby described in five patients with subcortical neoplasms. We performed the neuronavigation-guided craniotomies with the conventional technique. After opening the dura and exposing the cortical surface, we placed two or three arachnoid anchoring sutures to the dura mater, close to the edges of the exposed cortical surface. We placed these anchoring sutures under microscopy, using a 6–0 mononylon wire. With this technique, the cortex surface was kept close to the dura mater, minimizing its displacement during the approach to the subcortical lesion. In these five cases we operated, the cortical surface remained close to the dura, anchored by the arachnoid sutures. All the lesions were located with a good correlation between the handpiece tip inserted in the desired brain area and the display on the navigation system. Conclusion Arachnoid anchoring sutures to the dura mater on the edges of the cortex area exposed by craniotomy constitute a simple method to minimize brain displacement (brain-shift) in craniotomies for subcortical injuries, optimizing the use of the neuronavigation system.


2020 ◽  
Vol 2 (Supplement_3) ◽  
pp. ii2-ii3
Author(s):  
Kazuhiko Kurozumi

Abstract Navigation systems are reliable and safe for neurological surgery. Navigation is an attractive and innovative therapeutic option. Recently, endo and exoscopic surgeries have been gradually increasing in neurosurgery. We are currently trialing to use 4K and 8K systems to improve the accuracy and safety of our surgical procedures. Surgeries for deep-seated tumors are challenging because of the difficulty in creating a corridor and observing the interface between lesions and the normal area. In total, 315 patients underwent surgery at Okayama University between 2017 and 2019. Among them, we experienced 92 glioma surgeries using navigation systems. Preoperatively, we performed computed tomography imaging and contrast-enhanced magnetic resonance imaging (MRI) for the neuronavigation system. We experienced Curve(TM) Image Guided Surgery (BrainLab, Munich, Germany). The surgical trajectory was planned with functional MRI and diffusion tensor imaging to protect the eloquent area and critical vasculature of the brain. We used a clear plastic tubular retractor system, the ViewSite Brain Access System, for surgery of deep seated gliomas. We gently inserted and placed the ViewSite using the neuronavigation. The tumor was observed and resected through the ViewSite tubular retractor under a microscope and endoscope. If the tumor was large, we switched the ViewSite tubular retractor to brain spatulas to identify the boundary between the normal brain and lesion. We are currently using the combination of the tubular retractor and brain spatulas using navigation system. Here, we present and analyze our preoperative simulation, surgical procedure, and outcomes.


Neurosurgery ◽  
2010 ◽  
Vol 66 (1) ◽  
pp. 187-195 ◽  
Author(s):  
Jörg Wellmer ◽  
Yaroslav Parpaley ◽  
Marec von Lehe ◽  
Hans-Jürgen Huppertz

Abstract OBJECTIVE Focal cortical dysplasias (FCDs) are highly epileptogenic lesions. Surgical removal is frequently the best treatment option for pharmacoresistant epilepsy. However, subtle FCDs may remain undetected even after high-resolution magnetic resonance imaging (MRI). Morphometric MRI analysis, which compares the individual brain with a normal database, can facilitate the detection of FCDs. We describe how the results of normal database–based MRI postprocessing can be used to guide stereotactic electrode implantation and subsequent resection of lesions that are suspected to be FCDs. METHODS A presurgical evaluation was conducted on a 19-year-old woman with pharmacoresistant hypermotor seizures. Conventional high-resolution MRI was classified as negative for epileptogenic lesions. However, morphometric analysis of the spatially normalized MRI revealed abnormal gyration and blurring of the gray-white matter junction, which was suggestive of a small and deeply seated FCD in the left frontal lobe. RESULTS The brain region highlighted by morphometric analysis was marked as a region of interest, transferred back to the original dimension of the individual MRI, and imported into a neuronavigation system. This allowed the region of interest–targeted stereotactic implantation of 2 depth electrodes, by which seizure onset was confirmed in the lesion. The electrodes also guided the final resection, which rendered the patient seizure-free. The lesion was histologically classified as FCD Palmini and Lüders IIB. CONCLUSION Transferring normal database–based MRI postprocessing results into a neuronavigation system is a new and worthwhile extension of multimodal neuronavigation. The combination of resulting regions of interest with functional and anatomic data may facilitate planning of electrode implantation for invasive electroencephalographic recordings and the final resection of small or deeply seated FCDs.


TecnoLógicas ◽  
2017 ◽  
Vol 20 (40) ◽  
pp. 125-138
Author(s):  
Karin Correa-Arana ◽  
Oscar A. Vivas-Albán ◽  
José M. Sabater-Navarro

This paper presents a review about neurosurgery, robotic assistants in this type of procedure, and the approach to the problem of brain tissue displacement, including techniques for obtaining medical images. It is especially focused on the phenomenon of brain displacement, commonly known as brain shift, which causes a loss of reference between the preoperative images and the volumes to be treated during image-guided surgery. Hypothetically, with brain shift prediction and correction for the neuronavigation system, minimal invasion trajectories could be planned and shortened. This would reduce damage to functional tissues and possibly lower the morbidity and mortality in delicate and demanding medical procedures such as the removal of a brain tumor. This paper also mentions other issues associated with neurosurgery and shows the way robotized systems have helped solve these problems. Finally, it highlights the future perspectives of neurosurgery, a branch of medicine that seeks to treat the ailments of the main organ of the human body from the perspective of many disciplines.


2016 ◽  
Vol 18 (suppl 3) ◽  
pp. iii128.2-iii128 ◽  
Author(s):  
Afsoun Seddighi ◽  
Amir Saied Seddighi ◽  
Amir Nikouei ◽  
Gholamreza Mohseni

Author(s):  
Jin Yang ◽  
Guodao Wen ◽  
Chao Tang ◽  
Chunyu Zhong ◽  
Junhao Zhu ◽  
...  

Abstract Objective This article determines which of the one-and-a-half nostril, mononostril, and binostril endoscopic endonasal transsphenoidal approaches provide a superior manipulation during surgery. Methods The three approaches were orderly performed on 10 silicon-injected cadaveric heads to quantitatively assess surgical freedom and attack angle for sella. Measurements were determined with a standardized method under neuronavigation system using data of computed tomography. Results The one-and-a-half nostril endoscopic transsphenoidal approach (OETA) offered superior exposed area than that of the mononostril approach (META), and similar to that of the binostril approach (BETA). For surgical freedom at anatomic targets, the OETA showed greater surgical flexibility at pituitary center, the right medial optic carotid recess (R-mOCR), the left mOCR, the medial intersection of the right cavernous internal carotid artery, and extension line of upper margin of the clivus (R-mICC) than those of the META, and similar to those of the BETA.For sagittal angle of attack to the R-mOCR, R-mICC, and L-mOCR, the OETA can provide better angular freedom for surgeon than that of the META, and similar to that of the BETA. The OETA had the same axial attack to the pituitary center with the BETA. The OETA and the META had limited surgical freedom at L-mICC, and both inferior to the BETA. Conclusion The OETA has similar exposed area, surgical freedom, and attack angle for most anatomic targets to the BETA without resecting contralateral nasal septal mucosa, and obviously superior to the META.


1999 ◽  
Vol 91 (1) ◽  
pp. 73-79 ◽  
Author(s):  
Oliver Ganslandt ◽  
Rudolf Fahlbusch ◽  
Christopher Nimsky ◽  
Helmut Kober ◽  
Martin Möller ◽  
...  

Object. The authors conducted a study to evaluate the clinical outcome in 50 patients with lesions around the motor cortex who underwent surgery in which functional neuronavigation was performed.Methods. The sensorimotor cortex was identified in all patients with the use of magnetoencephalography (MEG). The MEG-source localizations were superimposed onto a three-dimensional magnetic resonance image and the image data set was implemented into a neuronavigation system. Based on this setup, the surgeon chose the best surgical strategy. During surgery, the pre- and postcentral gyri were identified by neuronavigation and, in addition, the central sulcus was localized using intraoperative recording of somatosensory evoked potentials. In all cases MEG localizations of the sensory or motor cortex were correct. In 30% of the patients preoperative paresis improved, in 66% no additional deficits occurred, and in only 4% (two patients) deterioration of neurological function occurred. In one of these patients the deterioration was not related to the procedure.Conclusions. The method of incorporating functional data into neuronavigation systems is a promising tool that can be used in more radical surgery to lessen morbidity around eloquent brain areas.


Sign in / Sign up

Export Citation Format

Share Document