scholarly journals Screening of hospital admissions for COVID-19 in Brunei Darussalam

2021 ◽  
Vol 12 (2) ◽  
pp. 89-91
Author(s):  
Sanny Zi Lung Choo ◽  
Hazirah Shafri ◽  
Fatimah Al-Zahara Johan ◽  
Norwani Basir ◽  
Pui Lin Chong ◽  
...  

From late December 2019, an outbreak of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurred in Wuhan, China and has spread globally resulting in a pandemic. Brunei Darussalam reported its first case of COVID-19 on 9 March 2020. Several measures were implemented to prevent a national outbreak. We report our experience with surveillance of patients requiring admission in all government hospitals. We detected one positive case, and through contact tracing two further cases were detected. Therefore, without this screening programme, these cases would likely have been missed, leading to further nosocomial and community spread.

Author(s):  
Ana da Silva Filipe ◽  
James Shepherd ◽  
Thomas Williams ◽  
Joseph Hughes ◽  
Elihu Aranday-Cortes ◽  
...  

AbstractSARS-CoV-2, the causative agent of COVID-19, emerged in Wuhan, China in December 2019 and spread rapidly throughout the world. Understanding the introductions of this new coronavirus in different settings may assist control efforts and the establishment of frameworks to support rapid response in future infectious disease outbreaks.We investigated the first four weeks of emergence of the SARS-CoV-2 virus in Scotland after the first case reported on the 1st March 2020. We obtained full genome sequences from 452 individuals with a laboratory-confirmed diagnosis of COVID-19, representing 20% of all cases until 1st April 2020 (n=2310). This permitted a genomic epidemiology approach to study the introductions and spread of the SARS-2 virus in Scotland.From combined phylogenetic and epidemiological analysis, we estimated at least 113 introductions of SARS-CoV-2 into Scotland during this period. Clusters containing multiple sequences suggestive of onward transmission occurred in 48/86 (56%). 42/86 (51%) clusters had no known international travel history indicating undetected introductions.The majority of viral sequences were most closely related to those circulating in other European countries, including Italy, Austria and Spain. Travel-associated introductions of SARS-CoV-2 into Scotland predated travel restrictions in the UK and other European countries. The first local transmission occurred three days after the first case. A shift from travel-associated to sustained community transmission was apparent after only 11 days. Undetected introductions occurred prior to the first known case of COVID-19. Earlier travel restrictions and quarantine measures might have resulted in fewer introductions into Scotland, thereby reducing the number of cases and the subsequent burden on health services. The high number of introductions and transmission rates were likely to have impacted on national contact tracing efforts. Our results also demonstrate that local real-time genomic epidemiology can be used to monitor transmission clusters and facilitate control efforts to restrict the spread of COVID-19.FundingMRC (MC UU 1201412), UKRI/Wellcome (COG-UK), Wellcome Trust Collaborator Award (206298/Z/17/Z – ARTIC Network; TCW Wellcome Trust Award 204802/Z/16/ZResearch in contextEvidence before this studyCoronavirus disease-2019 (COVID-19) was first diagnosed in Scotland on the 1st of March 2020 following the emergence of the causative severe acute respiratory system coronavirus 2 (SARS-CoV-2) virus in China in December 2019. During the first month of the outbreak in Scotland, 2310 positive cases of COVID-19 were detected, associated with 1832 hospital admissions, 207 intensive care admissions and 126 deaths. The number of introductions into Scotland and the source of those introductions was not known prior to this study.Added value of this studyUsing a combined phylogenetic and epidemiological approach following real-time next generation sequencing of 452 SARS-CoV-2 samples, it was estimated that the virus was introduced to Scotland on at least 113 occasions, mostly from other European countries, including Italy, Austria and Spain. Localised outbreaks occurred in the community across multiple Scottish health boards, within healthcare facilities and an international conference and community transmission was established rapidly, before local and international lockdown measures were introduced.


2020 ◽  
Vol 18 ◽  
Author(s):  
Rina Das ◽  
Dinesh Kumar Mehta ◽  
Meenakshi Dhanawat

Abstract:: A novel virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), appeared and expanded globally by the end of year in 2019 from Wuhan, China, causing severe acute respiratory syndrome. During its initial stage, the disease was called the novel coronavirus (2019-nCoV). It was named COVID-19 by the World Health Organization (WHO) on 11 February 2020. The WHO declared worldwide the SARS-CoV-2 virus a pandemic on March 2020. On 30 January 2020 the first case of Corona Virus Disease 2019 (COVID-19) was reported in India. Now in current situation the virus is floating in almost every part of the province and rest of the globe. -: On the basis of novel published evidences, we efficiently summarized the reported work with reference to COVID-19 epidemiology, pathogen, clinical symptoms, treatment and prevention. Using several worldwide electronic scientific databases such as Pubmed, Medline, Embase, Science direct, Scopus, etc were utilized for extensive investigation of relevant literature. -: This review is written in the hope of encouraging the people successfully with the key learning points from the underway efforts to perceive and manage SARS-CoV-2, suggesting sailent points for expanding future research.


Author(s):  
Olivier Nsekuye ◽  
Edson Rwagasore ◽  
Marie Aime Muhimpundu ◽  
Ziad El-Khatib ◽  
Daniel Ntabanganyimana ◽  
...  

We reported the findings of the first Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) four clusters identified in Rwanda. Case-investigations included contact elicitation, testing, and isolation/quarantine of confirmed cases. Socio-demographic and clinical data on cases and contacts were collected. A confirmed case was a person with laboratory confirmation of SARS-CoV-2 infection (PCR) while a contact was any person who had contact with a SARS-CoV-2 confirmed case within 72 h prior, to 14 days after symptom onset; or 14 days before collection of the laboratory-positive sample for asymptomatic cases. High risk contacts were those who had come into unprotected face-to-face contact or had been in a closed environment with a SARS-CoV-2 case for >15 min. Forty cases were reported from four clusters by 22 April 2020, accounting for 61% of locally transmitted cases within six weeks. Clusters A, B, C and D were associated with two nightclubs, one house party, and different families or households living in the same compound (multi-family dwelling). Thirty-six of the 1035 contacts tested were positive (secondary attack rate: 3.5%). Positivity rates were highest among the high-risk contacts compared to low-risk contacts (10% vs. 2.2%). Index cases in three of the clusters were imported through international travelling. Fifteen of the 40 cases (38%) were asymptomatic while 13/25 (52%) and 8/25 (32%) of symptomatic cases had a cough and fever respectively. Gatherings in closed spaces were the main early drivers of transmission. Systematic case-investigations contact tracing and testing likely contributed to the early containment of SARS-CoV-2 in Rwanda.


Author(s):  
Hayley A Thompson ◽  
Andria Mousa ◽  
Amy Dighe ◽  
Han Fu ◽  
Alberto Arnedo-Pena ◽  
...  

Abstract Background Understanding the drivers of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission is crucial for control policies, but evidence of transmission rates in different settings remains limited. Methods We conducted a systematic review to estimate secondary attack rates (SARs) and observed reproduction numbers (Robs) in different settings exploring differences by age, symptom status, and duration of exposure. To account for additional study heterogeneity, we employed a beta-binomial model to pool SARs across studies and a negative-binomial model to estimate Robs. Results Households showed the highest transmission rates, with a pooled SAR of 21.1% (95% confidence interval [CI]:17.4–24.8). SARs were significantly higher where the duration of household exposure exceeded 5 days compared with exposure of ≤5 days. SARs related to contacts at social events with family and friends were higher than those for low-risk casual contacts (5.9% vs 1.2%). Estimates of SARs and Robs for asymptomatic index cases were approximately one-seventh, and for presymptomatic two-thirds of those for symptomatic index cases. We found some evidence for reduced transmission potential both from and to individuals younger than 20 years of age in the household context, which is more limited when examining all settings. Conclusions Our results suggest that exposure in settings with familiar contacts increases SARS-CoV-2 transmission potential. Additionally, the differences observed in transmissibility by index case symptom status and duration of exposure have important implications for control strategies, such as contact tracing, testing, and rapid isolation of cases. There were limited data to explore transmission patterns in workplaces, schools, and care homes, highlighting the need for further research in such settings.


Animals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 16
Author(s):  
Anna Costagliola ◽  
Giovanna Liguori ◽  
Danila d’Angelo ◽  
Caterina Costa ◽  
Francesca Ciani ◽  
...  

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) belongs to the Beta-coronavirus genus. It is 96.2% homologous to bat CoV RaTG13 and 88% homologous to two bat SARS-like coronaviruses. SARS-CoV-2 is the infectious agent responsible for the coronavirus disease (COVID-19), which was first reported in the Hubei province of Wuhan, China, at the beginning of December 2019. Human transmission from COVID-19 patients or incubation carriers occurs via coughing, sneezing, speaking, discharge from the nose, or fecal contamination. Various strains of the virus have been reported around the world, with different virulence and behavior. In addition, SARS-CoV-2 shares certain epitopes with some taxonomically related viruses, with tropism for the most common synanthropic animals. By elucidating the immunological properties of the circulating SARS-CoV-2, a partial protection due to human–animal interactions could be supposed in some situations. In addition, differential epitopes could be used for the differential diagnosis of SARS-CoV-2 infection. There have been cases of transmission from people with COVID-19 to pets such as cats and dogs. In addition, wild felines were infected. All These animals were either asymptomatic or mildly symptomatic and recovered spontaneously. Experimental studies showed cats and ferrets to be more susceptible to COVID-19. COVID-19 positive dogs and felines do not transmit the infection to humans. In contrast, minks at farms were severely infected from people with COVID-19. A SARS-Cov-2 variant in the Danish farmed mink that had been previously infected by COVID-19 positive workers, spread to mink workers causing the first case of animal-to-human infection transmission that causes a moderate decreased sensitivity to neutralizing antibodies. Thus, more investigations are necessary. It remains important to understand the risk that people with COVID-19 pose to their pets, as well as wild or farm animals so effective recommendations and risk management measures against COVID-19 can be made. A One Health unit that facilitates collaboration between public health and veterinary services is recommended.


2021 ◽  
Vol 8 (2) ◽  
pp. 01-03
Author(s):  
Ashish Gujrathi

Coronavirus (COVID-19) was recognized in late December in Hubei province of Wuhan city in China. This highly contagious disease, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is transmitted from humans to humans. After the first case in Wuhan, the disease rapidly spread to other parts of the globe. On March 11, 2020, the World Health Organization (WHO) made an assessment that COVID-19 can be characterized as a pandemic. Thus, social-distancing became an important measure to stop the spread of this disease. Various countries across the world adopted nationwide lockdowns. This led to a completely new scenario for the world, where every business in each industry faced new challenges and witnessed new opportunities. Similarly, the medical personal protective industry, a vital part of the healthcare sector, also witnessed new growth opportunities.


Author(s):  
Alok Tiwari

ABSTRACTCOVID-19 epidemic is declared as the public health emergency of international concern by the World Health Organisation in the second week of March 2020. This disease originated from China in December 2019 has already caused havoc around the world, including India. The first case in India was reported on 30th January 2020, with the cases crossing 6000 on the day paper was written. Complete lockdown of the nation for 21 days and immediate isolation of infected cases are the proactive steps taken by the authorities. For a better understanding of the evolution of COVID-19 in the country, Susceptible-Infectious-Quarantined-Recovered (SIQR) model is used in this paper. It is predicted that actual infectious population is ten times the reported positive case (quarantined) in the country. Also, a single case can infect 1.55 more individuals of the population. Epidemic doubling time is estimated to be around 4.1 days. All indicators are compared with Brazil and Italy as well. SIQR model has also predicted that India will see the peak with 22,000 active cases during the last week of April followed by reduction in active cases. It may take complete July for India to get over with COVID-19.


2020 ◽  
Author(s):  
Kun Zhao ◽  
Zhang Cao ◽  
Changju Zhu ◽  
Yi Zhang ◽  
Feifan Chen

Abstract Background: SARS-CoV-2 is a newly discovered virus, leading COVID-19 a global threaten nowadays. Case Presentation: The first case of a patient with a thoracic aortic aneurysm (TAA) that became infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported here. The patient died suddenly from a ruptured aorta 19 h after hospital admission. Conclusion: COVID-19 patients with TAA should attract the highest vigilance as COVID-19 might expedite the process of TAA rupture through cytokine storm syndrome, leading to rapid death with little or no warning signs.


Author(s):  
Ouail Ouchetto ◽  
Asmaa Drissi Bourhanbour ◽  
Mounir Boumhamdi

ABSTRACT Objectives: Since the first case of severe acute respiratory syndrome coronavirus-2, identified in December 2019, in Wuhan in China, the number of cases rapidly increased into a pandemic. Governments worldwide have adopted different strategies and measures to interrupt the transmission of coronavirus disease 2019 (COVID-19). The main objective was to report and evaluate the effectiveness of the adopted measures in North Africa countries. Methods: In these countries, the effective reproductive number R(t), the naïve case fatality rate, and the adjusted case fatality rate were estimated and compared on different dates. Results: The obtained results show that the early strict application of containment measures and confinement could help contain the spread of the epidemic and maintain the number of deaths low. Conclusions: These measures might be useful for other countries that are experiencing the start of local COVID-19 outbreaks. They could also serve to halt the spread of new epidemics or pandemics.


Sign in / Sign up

Export Citation Format

Share Document