scholarly journals MELHORAMENTO ANIMAL: PREDIÇÃO DE VALORES GENÉTICOS PELO MODELO ANIMAL-BLUP EM BOVINOS DE LEITE, BOVINOS DE CORTE, OVINOS E SUÍNOS

1999 ◽  
Vol 4 (1) ◽  
Author(s):  
MARCOS DEON VILLELA DE RESENDE ◽  
JESUS ROLANDO H. ROSA PEREZ

Atualmente, o procedimento padrão de avaliação genética é o BLUP sob modelo animal. O presente trabalho apresenta aspectos práticos relativos à aplicação deste procedimento no melhoramento das principais espécies de animais domésticos. São abordados vários modelos animais e as várias medidas associadas aos valores genéticos preditos e à precisão das predições. Abstract Animal model – BLUP is the standard procedure for animals genetic evaluation. This paper deals with practical aspects concerning the application of this procedure for the improvement of the main species of domestic animals. Several animal models and measures associated to the predicted breeding values and accuracy of predictions are considered.

2021 ◽  
Vol 12 ◽  
Author(s):  
Mohammad Ali Nilforooshan ◽  
Dorian Garrick

Reduced models are equivalent models to the full model that enable reduction in the computational demand for solving the problem, here, mixed model equations for estimating breeding values of selection candidates. Since phenotyped animals provide data to the model, the aim of this study was to reduce animal models to those equations corresponding to phenotyped animals. Non-phenotyped ancestral animals have normally been included in analyses as they facilitate formation of the inverse numerator relationship matrix. However, a reduced model can exclude those animals and obtain identical solutions for the breeding values of the animals of interest. Solutions corresponding to non-phenotyped animals can be back-solved from the solutions of phenotyped animals and specific blocks of the inverted relationship matrix. This idea was extended to other forms of animal model and the results from each reduced model (and back-solving) were identical to the results from the corresponding full model. Previous studies have been mainly focused on reduced animal models that absorb equations corresponding to non-parents and solve equations only for parents of phenotyped animals. These two types of reduced animal model can be combined to formulate only equations corresponding to phenotyped parents of phenotyped progeny.


2012 ◽  
Vol 52 (1) ◽  
pp. 1 ◽  
Author(s):  
Gilbert Jeyaruban ◽  
Bruce Tier ◽  
David Johnston ◽  
Hans Graser

The advantages of using a univariate threshold animal model (TAM) over the conventional linear animal model (AM) in the development of a genetic evaluation system for feet and leg traits of Angus cattle were explored. The traits were scored on a scale of 1–9 with scores 5 and 6 being the most desirable. The genetic parameters and estimated breeding values for front feet angle (FA), rear feet angle (RA), front feet claw set (FC), rear feet claw set (RC), rear leg hind view (RH) and rear leg side view (RS) were compared from AM and TAM. In order to predict breeding values to identify the animals with intermediate optimum, the scores were categorised to form three groups to differentiate the desirable group (5–6) from the other two groups with less desirable feet and leg appearances (1–4 and 7–9). The AM and TAM were used to estimate genetic parameters for the grouped data as well as the original score data. A TAM using the group data was used to predict the probability and breeding value for the desirable intermediate group. For the original score data, estimated heritabilities on the underlying scale, using TAM, were 0.50, 0.46, 0.35, 0.44, 0.32 and 0.22 for FA, FC, RA, RC, RH and RS, respectively, and were 0.01–0.18 higher than the heritabilities estimated using AM. Genetic correlation between the six traits using a bivariate TAM with all scores ranged from 0.02 to 0.50 with front and rear angles had the highest genetic correlation at 0.50. For all six traits, proportion in the intermediate desirable group was higher than the other two groups combined. The low annual genetic change observed for all six traits over the 10 years of data recording reflected the lack of directional selection to improve the traits in Angus cattle. For genetic evaluation of feet and leg traits with an intermediate optimum, TAM is a preferred method for estimating genetic parameters and predicting breeding values for the desirable category. The TAM has now been implemented for regular estimated breeding value analysis of feet and leg traits of Angus cattle.


2007 ◽  
Vol 2007 ◽  
pp. 64-64
Author(s):  
Stefano Biffani ◽  
Fabiola Canavesi ◽  
Maurizio Marusi

In January 2006, ANAFI (Italian Holstein Breeders Association) introduced a genetic evaluation for fertility based on a multiple-trait animal model (Biffani et al., 2005), which included the following traits: days from calving to first insemination (DTFS), calving interval (CI), first-service non return rate to 56 d (NR56), angularity (ANG) and mature equivalent milk yield at 305 d (ME305). Breeding values have been subsequently combined in an aggregate index (T), with the breeding goal to increase conception rate (CR). This paper will show how the breeding values have been combined into an aggregate index. At the same time the efficiency of selecting on alternative aggregate indexes versus the official aggregate index is presented.


2015 ◽  
Vol 223 (3) ◽  
pp. 157-164 ◽  
Author(s):  
Georg Juckel

Abstract. Inflammational-immunological processes within the pathophysiology of schizophrenia seem to play an important role. Early signals of neurobiological changes in the embryonal phase of brain in later patients with schizophrenia might lead to activation of the immunological system, for example, of cytokines and microglial cells. Microglia then induces – via the neurotoxic activities of these cells as an overreaction – a rarification of synaptic connections in frontal and temporal brain regions, that is, reduction of the neuropil. Promising inflammational animal models for schizophrenia with high validity can be used today to mimic behavioral as well as neurobiological findings in patients, for example, the well-known neurochemical alterations of dopaminergic, glutamatergic, serotonergic, and other neurotransmitter systems. Also the microglial activation can be modeled well within one of this models, that is, the inflammational PolyI:C animal model of schizophrenia, showing a time peak in late adolescence/early adulthood. The exact mechanism, by which activated microglia cells then triggers further neurodegeneration, must now be investigated in broader detail. Thus, these animal models can be used to understand the pathophysiology of schizophrenia better especially concerning the interaction of immune activation, inflammation, and neurodegeneration. This could also lead to the development of anti-inflammational treatment options and of preventive interventions.


2018 ◽  
Vol 9 (5) ◽  
pp. 253-258
Author(s):  
N. Shalaby ◽  
M. Mostafa ◽  
M. Al-Arain ◽  
M. Abd-Algalil ◽  
Manal Ismail

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4221
Author(s):  
Aage Kristian Olsen Alstrup ◽  
Svend Borup Jensen ◽  
Ole Lerberg Nielsen ◽  
Lars Jødal ◽  
Pia Afzelius

The development of new and better radioactive tracers capable of detecting and characterizing osteomyelitis is an ongoing process, mainly because available tracers lack selectivity towards osteomyelitis. An integrated part of developing new tracers is the performance of in vivo tests using appropriate animal models. The available animal models for osteomyelitis are also far from ideal. Therefore, developing improved animal osteomyelitis models is as important as developing new radioactive tracers. We recently published a review on radioactive tracers. In this review, we only present and discuss osteomyelitis models. Three ethical aspects (3R) are essential when exposing experimental animals to infections. Thus, we should perform experiments in vitro rather than in vivo (Replacement), use as few animals as possible (Reduction), and impose as little pain on the animal as possible (Refinement). The gain for humans should by far exceed the disadvantages for the individual experimental animal. To this end, the translational value of animal experiments is crucial. We therefore need a robust and well-characterized animal model to evaluate new osteomyelitis tracers to be sure that unpredicted variation in the animal model does not lead to a misinterpretation of the tracer behavior. In this review, we focus on how the development of radioactive tracers relies heavily on the selection of a reliable animal model, and we base the discussions on our own experience with a porcine model.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2050
Author(s):  
Beatriz Castro Dias Cuyabano ◽  
Gabriel Rovere ◽  
Dajeong Lim ◽  
Tae Hun Kim ◽  
Hak Kyo Lee ◽  
...  

It is widely known that the environment influences phenotypic expression and that its effects must be accounted for in genetic evaluation programs. The most used method to account for environmental effects is to add herd and contemporary group to the model. Although generally informative, the herd effect treats different farms as independent units. However, if two farms are located physically close to each other, they potentially share correlated environmental factors. We introduce a method to model herd effects that uses the physical distances between farms based on the Global Positioning System (GPS) coordinates as a proxy for the correlation matrix of these effects that aims to account for similarities and differences between farms due to environmental factors. A population of Hanwoo Korean cattle was used to evaluate the impact of modelling herd effects as correlated, in comparison to assuming the farms as completely independent units, on the variance components and genomic prediction. The main result was an increase in the reliabilities of the predicted genomic breeding values compared to reliabilities obtained with traditional models (across four traits evaluated, reliabilities of prediction presented increases that ranged from 0.05 ± 0.01 to 0.33 ± 0.03), suggesting that these models may overestimate heritabilities. Although little to no significant gain was obtained in phenotypic prediction, the increased reliability of the predicted genomic breeding values is of practical relevance for genetic evaluation programs.


2013 ◽  
Vol 26 (5) ◽  
pp. 264-271 ◽  
Author(s):  
Mousumi Tania ◽  
Md. Asaduzzaman Khan ◽  
Kun Xia

ObjectiveAutism, a lifelong neuro-developmental disorder is a uniquely human condition. Animal models are not the perfect tools for the full understanding of human development and behavior, but they can be an important place to start. This review focused on the recent updates of animal model research in autism.MethodsWe have reviewed the publications over the last three decades, which are related to animal model study in autism.ResultsAnimal models are important because they allow researchers to study the underlying neurobiology in a way that is not possible in humans. Improving the availability of better animal models will help the field to increase the development of medicines that can relieve disabling symptoms. Results from the therapeutic approaches are encouraging remarkably, since some behavioral alterations could be reversed even when treatment was performed on adult mice. Finding an animal model system with similar behavioral tendencies as humans is thus vital for understanding the brain mechanisms, supporting social motivation and attention, and the manner in which these mechanisms break down in autism. The ongoing studies should therefore increase the understanding of the biological alterations associated with autism as well as the development of knowledge-based treatments therapy for those struggling with autism.ConclusionIn this review, we have presented recent advances in research based on animal models of autism, raising hope for understanding the disease biology for potential therapeutic intervention to improve the quality of life of autism individuals.


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1011
Author(s):  
Thi-Quyen Nguyen ◽  
Rare Rollon ◽  
Young-Ki Choi

Influenza remains one of the most significant public health threats due to its ability to cause high morbidity and mortality worldwide. Although understanding of influenza viruses has greatly increased in recent years, shortcomings remain. Additionally, the continuous mutation of influenza viruses through genetic reassortment and selection of variants that escape host immune responses can render current influenza vaccines ineffective at controlling seasonal epidemics and potential pandemics. Thus, there is a knowledge gap in the understanding of influenza viruses and a corresponding need to develop novel universal vaccines and therapeutic treatments. Investigation of viral pathogenesis, transmission mechanisms, and efficacy of influenza vaccine candidates requires animal models that can recapitulate the disease. Furthermore, the choice of animal model for each research question is crucial in order for researchers to acquire a better knowledge of influenza viruses. Herein, we reviewed the advantages and limitations of each animal model—including mice, ferrets, guinea pigs, swine, felines, canines, and non-human primates—for elucidating influenza viral pathogenesis and transmission and for evaluating therapeutic agents and vaccine efficacy.


Sign in / Sign up

Export Citation Format

Share Document