scholarly journals ANALYSIS OF NOx EMISSIONS AND SPECIFIC FUEL CONSUMPTION OF A DIESEL ENGINE OPERATING WITH DIESEL/BIODIESEL BLENDS

2013 ◽  
Vol 12 (1) ◽  
pp. 11 ◽  
Author(s):  
C. V. Teixeira ◽  
A. B. Caldeira ◽  
M. J. Colaço

This study aims to examine experimentally the NOx emissions and the performance of a motor AGRALE M90, single cylinder, operating with diesel and biodiesel blends. The engine was linked to an electric generator, which provided 1500 W, 3000 W and 4500 W to an electrical system. The engine was tested with fuel blends containing different amounts of commercial diesel (B4) with palm biodiesel (B100). NOx emissions, as well as the specific fuel consumption of diesel, biodiesel and their mixtures were measured and analyzed. In this study, emissions of NOx have been prioritized over other pollutants by environmental issues and techniques. Air pollution by NOx causes serious respiratory problems. Furthermore, emissions of NOx enable a qualitative assessment of the combustion process. The results show that the commercial diesel has better performance in terms of energy efficiency and NOx emissions.

Author(s):  
Dimitrios T. Hountalas ◽  
Spiridon Raptotasios ◽  
Antonis Antonopoulos ◽  
Stavros Daniolos ◽  
Iosif Dolaptzis ◽  
...  

Currently the most promising solution for marine propulsion is the two-stroke low-speed diesel engine. Start of Injection (SOI) is of significant importance for these engines due to its effect on firing pressure and specific fuel consumption. Therefore these engines are usually equipped with Variable Injection Timing (VIT) systems for variation of SOI with load. Proper operation of these systems is essential for both safe engine operation and performance since they are also used to control peak firing pressure. However, it is rather difficult to evaluate the operation of VIT system and determine the required rack settings for a specific SOI angle without using experimental techniques, which are extremely expensive and time consuming. For this reason in the present work it is examined the use of on-board monitoring and diagnosis techniques to overcome this difficulty. The application is conducted on a commercial vessel equipped with a two-stroke engine from which cylinder pressure measurements were acquired. From the processing of measurements acquired at various operating conditions it is determined the relation between VIT rack position and start of injection angle. This is used to evaluate the VIT system condition and determine the required settings to achieve the desired SOI angle. After VIT system tuning, new measurements were acquired from the processing of which results were derived for various operating parameters, i.e. brake power, specific fuel consumption, heat release rate, start of combustion etc. From the comparative evaluation of results before and after VIT adjustment it is revealed an improvement of specific fuel consumption while firing pressure remains within limits. It is thus revealed that the proposed method has the potential to overcome the disadvantages of purely experimental trial and error methods and that its use can result to fuel saving with minimum effort and time. To evaluate the corresponding effect on NOx emissions, as required by Marpol Annex-VI regulation a theoretical investigation is conducted using a multi-zone combustion model. Shop-test and NOx-file data are used to evaluate its ability to predict engine performance and NOx emissions before conducting the investigation. Moreover, the results derived from the on-board cylinder pressure measurements, after VIT system tuning, are used to evaluate the model’s ability to predict the effect of SOI variation on engine performance. Then the simulation model is applied to estimate the impact of SOI advance on NOx emissions. As revealed NOx emissions remain within limits despite the SOI variation (increase).


2018 ◽  
Author(s):  
Adriaan Smuts Van Niekerk ◽  
Benjamin Drew ◽  
Neil Larsen ◽  
Peter Kay

To reduce the amount of carbon dioxide released from transportation the EU has implemented legislation to mandate the renewable content of petrol and diesel fuels. However, due to the complexity of the combustion process the addition of renewable content, such as biodiesel and ethanol, can have a detrimental effect on other engine emissions. In particular the engine load can have a significant impact on the emissions. Most research that have studied this issue are based on steady state tests, that are unrealistic of real world driving and will not capture the difference between full and part loads. This study aims to address this by investigating the effect of renewable fuel blends of diesel, biodiesel and ethanol on the emissions of a compression ignition engine tested over the World Harmonised Light Vehicle Test Procedure (WLTP). Diesel, biodiesel and ethanol were blended to form binary and ternary blends, the ratios were determined by Design of Experiments (DoE). The total amount of emissions for CO, CO2 and NOx as well as the fuel consumption, were measured from a 2.4 liter compression ignition (CI) engine running over the WLTP drive cycle. The results depicted that percentages smaller than 10 % of ethanol in the fuel blend can reduce CO emissions, CO2 emissions as well as NOx emissions, but increases fuel consumption with increasing percentage of ethanol in the fuel blend. Blends with biodiesel resulted in minor increases in CO emissions due to the engine being operated in the low and medium load regions over the WLTP. CO2 emissions as well as NOx emissions increased as a result of the high oxygen content in biodiesel which promoted better combustion. Fuel consumption increased for blends with biodiesel as a result from biodiesel's lower heating value. All the statistical models describing the engine responses were significant and this demonstrated that a mixture DoE is suitable to quantify the effect of fuel blends on an engine's emissions response. An optimised ternary blend of B2E9 was found to be suitable as a 'drop in' fuel that will reduce harmful emissions of CO emissions by approximately 34 %, NOx emissions by 10 % and CO2 emissions by 21 % for transient engine operating scenarios such as the WLTP drive cycle.


Author(s):  
Muataz Abotabik ◽  
Richard T. Meyer

Major interests in the automotive industry include the use of alternative fuels and reduced fuel usage to address fuel supply security concerns and regulatory requirements. The majority of previous internal combustion engine (ICE) control strategies consider only the First Law of Thermodynamics (FLT). However, FLT is not able to distinguish losses in work potential due to irreversibilities, e.g., up to 25% of fuel exergy may be lost to irreversibilities. To account for these losses, the Second Law of Thermodynamics (SLT) is applicable. The SLT is used to identify the quality of an energy source via availability since not all the energy in a particular energy source is available to produce work; therefore optimal control that includes availability may be another path toward reduced fuel use. Herein, Model Predictive Control (MPC) is developed for both FLT and SLT approaches where fuel consumption is minimized in the former and availability destruction in the latter. Additionally, both include minimization of load tracking error. The controls are evaluated in the simulation of a single cylinder naturally aspirated compression ignition engine that is fueled with either 20% biodiesel and 80% diesel blend or diesel only. Control simulations at a constant engine speed and changing load profile show that the SLT approach results in higher SLT efficiency, reduced specific fuel consumption, and decreased NOx emissions. Further, compared to use of diesel only, use of the biodiesel blend resulted in less SLT efficiency, higher specific fuel consumption, and lower NOx emissions.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1845 ◽  
Author(s):  
Haifeng Liu ◽  
Xichang Wang ◽  
Diping Zhang ◽  
Fang Dong ◽  
Xinlu Liu ◽  
...  

The effects of three kinds of oxygenated fuel blends—i.e., ethanol-gasoline, n-butanol-gasoline, and 2,5-dimethylfuran (DMF)-gasoline-on fuel consumption, emissions, and acceleration performance were investigated in a passenger car with a chassis dynamometer. The engine mounted in the vehicle was a four-cylinder, four-stroke, turbocharging gasoline direct injection (GDI) engine with a displacement of 1.395 L. The test fuels include ethanol-gasoline, n-butanol-gasoline, and DMF-gasoline with four blending ratios of 20%, 50%, 75%, and 100%, and pure gasoline was also tested for comparison. The original contribution of this article is to systemically study the steady-state, transient-state, cold-start, and acceleration performance of the tested fuels under a wide range of blending ratios, especially at high blending ratios. It provides new insight and knowledge of the emission alleviation technique in terms of tailoring the biofuels in GDI turbocharged engines. The results of our works showed that operation with ethanol–gasoline, n-butanol–gasoline, and DMF–gasoline at high blending ratios could be realized in the GDI vehicle without any modification to its engine and the control system at the steady state. At steady-state operation, as compared with pure gasoline, the results indicated that blending n-butanol could reduce CO2, CO, total hydrocarbon (THC), and NOX emissions, which were also decreased by employing a higher blending ratio of n-butanol. However, a high fraction of n-butanol increased the volumetric fuel consumption, and so did the DMF–gasoline and ethanol–gasoline blends. A large fraction of DMF reduced THC emissions, but increased CO2 and NOX emissions. Blending n-butanol can improve the equivalent fuel consumption. Moreover, the particle number (PN) emissions were significantly decreased when using the high blending ratios of the three kinds of oxygenated fuels. According to the results of the New European Drive Cycle (NEDC) cycle, blending 20% of n-butanol with gasoline decreased CO2 emissions by 5.7% compared with pure gasoline and simultaneously reduced CO, THC, NOX emissions, while blending ethanol only reduced NOX emissions. PN and particulate matter (PM) emissions decreased significantly in all stages of the NEDC cycle with the oxygenated fuel blends; the highest reduction ratio in PN was 72.87% upon blending 20% ethanol at the NEDC cycle. The high proportion of n-butanol and DMF improved the acceleration performance of the vehicle.


2015 ◽  
Vol 730 ◽  
pp. 283-286
Author(s):  
Rong Fu Zhu ◽  
Yun Long Wang ◽  
Hui Wang ◽  
Yuan Tao Sun

The performance of engine fueled with diesel/biodiesel blends was tested. It was indicated from the experimental results that the brake power, torque out and brake specific fuel consumption of engine fueled with diesel/biodiesel caused slight variations, while NOx emission increased significantly compared with engine fueled with diesel. In order to reduce NOx emission of engine fueled with pure biodiesel, retarding fuel delivery advance angle was used, and the NOx emission tests revealed that the NOx emission decreased significantly at different engine speeds.


2015 ◽  
Vol 18 (2) ◽  
pp. 24-36
Author(s):  
Phuong Nu Thanh Ton ◽  
Giang Hoang Le ◽  
Hien Thi To ◽  
Takenaka Norimichi

This study evaluated brake specific fuel consumption and regulated emissions from palm biodiesel fuel (palm BDF) used on diesel generators. The tests were performed at an idle and high load with different mixing rate blends between diesel fuel and palm BDF (0 %, 5 %, 10 %, 15 %, 20 %, 50 %, 100 % which was called B0, B5, B10, B15, B20, B50 and B100) respectively. The results showed at each loading mode, brake specific fuel consumption increased when the volume of palm BDF rose in the blends. At the idle mode, brake specific fuel consumption increased 1.32 %, 1.8 %, 2.8 %, 3.74 %, 5.61 %, 6.54 % for B5, B10, B15, B20, B50, B100, compared with B0. Similarly at the high load mode, brake specific fuel consumption improved 1.51 %, 1.86 %, 2.18 %, 4.78 %, 5.36 %, 6.76 % for B5, B10, B15, B20, B50, B100, compared with B0. In both two load modes, when the volume of palm BDF in the fuel blends grew gradually, the concentration of CO, SO2 and CxHy emission reduced while the concentration of NO and NO2, CO2 went up. Emission factors of CO, SO2 and CO2 at high load are higher than those at an idle load, regardless the ratio of palm BDF to diesel fue. Conversely, emission factors of NO, NO2 at high load are higher.


Author(s):  
Simeon Iliev

The aim of this study is to develop the one-dimensional model of a four-cylinder, four-stroke, multi-point injection system SI engine and a direct injection system SI engine for predicting the effect of various fuel types on engine performances, specific fuel consumption, and emissions. Commercial software AVL BOOST was used to examine the engine characteristics for different blends of methanol and gasoline (by volume: 5% methanol [M5], 10% methanol [M10], 20% methanol [M20], 30% methanol [M30], and 50% methanol [M50]). The methanol-gasoline fuel blend results were compared to those of net gasoline fuel. The obtained results show that when methanol-gasoline fuel blends were used, engine performance such as power and torque increases and the brake-specific fuel consumption increases with increasing methanol percentage in the blended fuel.


2021 ◽  
Author(s):  
Naveen Rana ◽  
Harikrishna Nagwan ◽  
Kannan Manickam

Abstract Indeed, the development of alternative fuels for use in internal combustion engines has become an essential requirement to meet the energy demand and to deal with the different problems related to fuel. The research in this domain leads to the identification of adverse fuel properties and for their solution standard limits are being defined. This paper outlines an investigation of performance and combustion characteristics of a 4-stroke diesel engine using different cymbopogon (lemongrass) - diesel fuel blends. 10% to 40% cymbopogon is mixed with diesel fuel and tested for performance characteristics like brake specific fuel consumption and brake thermal efficiency. To obtain emission characteristics smoke density in the terms of HSU has been measured. In result, it has observed that there is an increase of 5% in brake thermal efficiency and 16.33% decrease in brake specific fuel consumption. Regarding emission characteristics, a 12.9% decrease in smoke emission has been found.


Author(s):  
Joshua S. Lacey ◽  
Zoran S. Filipi ◽  
Sakthish R. Sathasivam ◽  
Richard J. Peyla ◽  
William Cannella ◽  
...  

The homogeneous charge compression ignition (HCCI) combustion process is highly reliant upon a favorable in-cylinder thermal environment in an engine, for a given fuel. Commercial fuels can differ considerably in composition and autoignition chemistry; hence, strategies intended to bring HCCI to market must account for this fuel variability. To this end, a test matrix consisting of eight gasoline fuels comprised of blends made solely from refinery streams were run in an experimental, single cylinder HCCI engine. All fuels contained 10% ethanol by volume and were representative of a cross section of fuels one would expect to find at gasoline pumps across the United States. The properties of the fuels were varied according to research octane number (RON), sensitivity (S = RON-MON), and volumetric content of aromatics and olefins. For each fuel, a sweep of load (mass of fuel injected per cycle) was conducted and the intake air temperature was adjusted in order to keep the crank angle of the 50% mass fraction burned point (CA50) constant. By analyzing the amount of temperature compensation required to maintain constant combustion phasing, it was possible to determine the sensitivity of HCCI to changes in load for various fuels. In addition, the deviation of fuel properties brought about variations in important engine performance metrics like specific fuel consumption. Though the injected energy content per cycle was matched at the baseline point across the test fuel matrix, thermodynamic differences resulted in a spread of specific fuel consumption for the fuels tested.


2014 ◽  
Vol 663 ◽  
pp. 13-18 ◽  
Author(s):  
M. Habibullah ◽  
H.H. Masjuki ◽  
M.A. Kalam ◽  
A.M. Ashraful ◽  
K.A.H. Al Mahmud ◽  
...  

Now-a-days the demand of alternative fuel is continuously increasing all over the world due to the rapid depletion of fossil fuel and increased global demand. Biodiesel is renewable and sustainable energy source derived from vegetable oils and animal fats which can be the best substitute of fossil fuel. This paper investigates the property of different biodiesel such as palm, coconut and their blends with conventional diesel also analyzed the engine performance like engine break power, speed, break specific fuel consumption (BSFC), torque in diesel engine. In this paper 20% palm biodiesel with diesel (P20), 20% coconut biodiesel with diesel (C20), 30% palm biodiesel with diesel (P30), 30% coconut biodiesel with diesel (C30) and combination of 15% palm biodiesel and 15% of coconut biodiesel with diesel (C15P15) were used for study. Biodiesel was produced by using transesterification process. The density and kinematic viscosity for C15P15 fuel is slightly higher and flash point is slightly lower than diesel fuel as well as others two biodiesel blends whereas pure palm oil biodiesel shows the higher flash point and acid value. Engine performance test was carried out at 75 kg load condition with variable speeds of 1400 rpm to 2000 rpm at an interval of 200 rpm. Engine brake power produced by mixed biodiesel (C15P15) is slightly lower than the fossil diesel but slightly higher than biodiesel (only palm or coconut). Engine torque produce by the mixed biodiesel is almost the same with the fossil diesel but higher than the others biodiesel blends. Engine brake specific fuel consumption of mixed biodiesel is slightly higher than fossil diesel but lower than others existing biodiesel. It can be reported that the fuel C15P15 showed better performance and can be used as fuel alternative to diesel fuel to reduce the greenhouse gas emission and dependency on crude oil.


Sign in / Sign up

Export Citation Format

Share Document