scholarly journals PERFORMANCE ASSESSMENT OF A LARGE INTERNAL COMBUSTION ENGINE DUE TO INLET AIR COOLING AND DEHUMIDIFICATION: GT-POWER SOFTWARE SIMULATION

2021 ◽  
Vol 20 (2) ◽  
pp. 13
Author(s):  
I. C. Campblell ◽  
A. Chun ◽  
B. M. F. Miotto ◽  
J. L. M. Donatelli ◽  
J. J. C. S. Santos ◽  
...  

Large internal combustion engines (ICEs) performance is limited by knocking phenomenon due to harsh ambient conditions such as hot temperature and excessive humidity. The performance of these engines can be enhanced by cooling and dehumidifying the inlet air on turbocharger upstream under safe operation conditions through a cooling coil heat exchanger, hence, increasing the power output as well as reducing the brake specific fuel consumption and pollutant specific emissions. Analysis have been performed in the GT-POWER software through a 1-D thermodynamic modelling of the Wärtsilä W20V34SG engine, making it possible to verify the influence of cooled and dehumidified ambient air, considering a temperature range from 9.5°C (282.7 K) to 15.5°C (288.7 K), while keeping 1 bar for pressure and relative humidity of 100%. Furthermore, the brake mean effective pressure (BMEP) has been set from 20 to 23.45 bar with a step of 1.15 bar. Such simulations are aimed to find the maximum air temperature at the cooling coil outlet in which the average of maximum cylinder pressures does not exceed the safety limit pressure of 186 bar while maintaining control on the wastegate valve. As a result, it was possible to evaluate that the maximum temperature to be chosen, under the conditions already mentioned, should be lower than 13.8°C (287 K).

2019 ◽  
Vol 22 (1) ◽  
pp. 341-348
Author(s):  
Nir Druker ◽  
Gideon Goldwine ◽  
Eran Sher

We propose here a new method to evaluate the mixture charge density inside the combustion chamber of an internal combustion engine. This is an important parameter that is needed to optimize the spark timing and the amount of fuel that is introduced to the cylinder at each cycle, thus optimizing the engine operation for higher power, lower brake-specific fuel consumption, or lower pollutants’ emission at any altitude/ambient conditions. The evaluation of the charge density is performed at each cycle (on a cycle-to-cycle basis) by using the voltage–current characteristics of the spark plug gap. This real-time evaluation method may save two of the present in-use temperature and pressure gages, thus considerably increasing the reliability of the propulsion unit. Owing to the expected higher system reliability and system simplicity, small unmanned aerial vehicles, as well as small automotive engines of various types, may significantly benefit from this proposed method. The method principles, rationale, and some preliminary results are presented.


2020 ◽  
Vol 164 ◽  
pp. 03015
Author(s):  
Sergey Kireev ◽  
Marina Korchagina ◽  
Andrey Efimov ◽  
Valentin Stepanov

The purpose of this article is to increase the efficiency of the design process and reduce the cost of field experiments by using numerical analysis methods of the dimensional capacity heating efficiency of the internal combustion engine exhaust system. To solve the problem, a non-stationary nonlinear solver of gas dynamic processes (Siemens STAR-CCM+) was used, which allows to evaluate the correctness of the problem statement, significantly reducing the cost of full-scale tests. The paper considers the heating of a dimensional two-section tank in the layout of the cementing unit on the chassis with a triplex high-pressure pump and a drive from the power take-off box on the gear box of the chassis engine. The exhaust pipe structurally passes inside the measuring tank. According to the research results obtained graphic dependences of temperature change of liquid measuring cups to control points, the distribution of temperature field of the liquid in a volumetric tank, distribution of the temperature field of the surrounding air, stream lines and velocity field of the ambient air and the exhaust gases of internal combustion engines. The results of the calculations clearly show that the application of the method of heating the measuring capacity by entering the exhaust pipe directly into the liquid can be considered effective.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1830 ◽  
Author(s):  
Moonchan Kim ◽  
Jungmo Oh ◽  
Changhee Lee

Compression ignition engines used as marine engines are the most efficient internal combustion engines. They are well-established products, and millions are already on the market. Water-in-MDO (marine diesel oil) emulsions are the best alternative fuel for compression ignition engines and can be utilised with the existing setup of 2.0 L automotive common rail direct injection (CRDI) engines. They have benefits for the simultaneous reduction of both NOx and smoke (black carbon). Furthermore, they have a significant impact on the improvement of combustion efficiency. Micro-explosions are the most important phenomenon of water-in-diesel emulsions inside an internal combustion engine chamber. They affect both the emission reduction and combustion efficiency improvements directly and indirectly in accordance with the brake mean effective pressure (BMEP) and rpm. Owing to the influence of micro-emulsions on the combustion and emissions of water-in-diesel emulsion fuel, the reduction ratios of NOx and smoke in a used engine are approximately 30% and 80%, respectively. The effect of the operating parameters on micro-emulsions is presented.


1994 ◽  
Vol 4 (2) ◽  
pp. 83 ◽  
Author(s):  
E Carter ◽  
B Milton

The performance of internal combustion engines used in fire fighting equipment can be affected by the fireground ambient conditions. Both gasoline (SI) and diesel (CI) engines can suffer significant power losses due to high temperatures and reduced oxygen in the intake air caused by mixing with the products of combustion of a fire. This, and other engine problems associated with starting and operation under fireground conditions are examined in this paper.


Author(s):  
Israel Campbell ◽  
Andre Chun ◽  
Bruno Muniz de Freitas Miotto ◽  
José Joaquim Conceição Soares Santos ◽  
João L M Donatelli ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 996
Author(s):  
Venera Giurcan ◽  
Codina Movileanu ◽  
Adina Magdalena Musuc ◽  
Maria Mitu

Currently, the use of fossil fuels is very high and existing nature reserves are rapidly depleted. Therefore, researchers are turning their attention to find renewable fuels that have a low impact on the environment, to replace these fossil fuels. Biogas is a low-cost alternative, sustainable, renewable fuel existing worldwide. It can be produced by decomposition of vegetation or waste products of human and animal biological activity. This process is performed by microorganisms (such as methanogens and sulfate-reducing bacteria) by anaerobic digestion. Biogas can serve as a basis for heat and electricity production used for domestic heating and cooking. It can be also used to feed internal combustion engines, gas turbines, fuel cells, or cogeneration systems. In this paper, a comprehensive literature study regarding the laminar burning velocity of biogas-containing mixtures is presented. This study aims to characterize the use of biogas as IC (internal combustion) engine fuel, and to develop efficient safety recommendations and to predict and reduce the risk of fires and accidental explosions caused by biogas.


2021 ◽  
Vol 1 ◽  
pp. 477-486
Author(s):  
Vahid Douzloo Salehi

AbstractHydrogen is a promising fuel to fulfil climate goals and future legislation requirements due to its carbon-free property. Especially hydrogen fueled buses and heavy-duty vehicles (HDVs) strongly move into the foreground. In contrast to the hydrogen-based fuel cell technology, which is already in commercial use, vehicles with hydrogen internal combustion engines (H2-ICE) are also a currently pursued field of research, representing a potentially holistic carbon-free drive train. Real applications of H2-ICE vehicles are currently not known but can be expected, since their suitability is put to test in a few insolated projects at this time. This paper provides a literature survey to reflect the current state of H2-ICEs focused on city buses. An extended view to HDVs and fuel cell technology allows to recognize trends in hydrogen transport sector, to identify further research potential and to derive useful conclusion. In addition, within this paper we apply green MAGIC as a holistic approach and discuss Well-to-Tank green hydrogen supply in relation to a H2-ICE city bus. Building on that, we introduce the upcoming Hydrogen-bus project, where tests of H2-ICE buses in real driving mode are foreseen to investigate Tank-to-Wheel.


2013 ◽  
Vol 6 (2) ◽  
pp. 1138-1144 ◽  
Author(s):  
Yuri Shukhman ◽  
Vladimir Baibikov ◽  
Abraham Marmur ◽  
Mark Veinblat ◽  
Leonid Tartakovsky

Author(s):  
Jiang Lu ◽  
Ashwani K. Gupta ◽  
Eugene L. Keating

Abstract Numerical simulation of flow, combustion, heat release rate and pollutants emission characteristics have been obtained using a single cylinder internal combustion engine operating with propane as the fuel. The data are compared with experimental results and show excellent agreement for peak pressure and the rate of pressure rise as a function of crank angle. The results obtained for NO and CO are also found to be in good agreement and are similar to those reported in the literature for the chosen combustion chamber geometry. The results have shown that both the combustion chamber geometry and engine operating parameters affects the flame growth within the combustion chamber which subsequently affects the pollutants emission levels. The code employed the time marching procedure and solves the governing partial differential equations of multi-component chemically reacting fluid flow by finite difference method. The numerical results provide a cost effective means of developing advanced internal combustion engine chamber geometry design that provides high efficiency and low pollution levels. It is expected that increased computational tools will be used in the future for enhancing our understanding of the detailed combustion process in internal combustion engines and all other energy conversion systems. Such detailed information is critical for the development of advanced methods for energy conservation and environmental pollution control.


Author(s):  
Federico Perini ◽  
Anand Krishnasamy ◽  
Youngchul Ra ◽  
Rolf D. Reitz

The need for more efficient and environmentally sustainable internal combustion engines is driving research towards the need to consider more realistic models for both fuel physics and chemistry. As far as compression ignition engines are concerned, phenomenological or lumped fuel models are unreliable to capture spray and combustion strategies outside of their validation domains — typically, high-pressure injection and high-temperature combustion. Furthermore, the development of variable-reactivity combustion strategies also creates the need to model comprehensively different hydrocarbon families even in single fuel surrogates. From the computational point of view, challenges to achieving practical simulation times arise from the dimensions of the reaction mechanism, that can be of hundreds species even if hydrocarbon families are lumped into representative compounds, and thus modeled with non-elementary, skeletal reaction pathways. In this case, it is also impossible to pursue further mechanism reductions to lower dimensions. CPU times for integrating chemical kinetics in internal combustion engine simulations ultimately scale with the number of cells in the grid, and with the cube number of species in the reaction mechanism. In the present work, two approaches to reduce the demands of engine simulations with detailed chemistry are presented. The first one addresses the demands due to the solution of the chemistry ODE system, and features the adoption of SpeedCHEM, a newly developed chemistry package that solves chemical kinetics using sparse analytical Jacobians. The second one aims to reduce the number of chemistry calculations by binning the CFD cells of the engine grid into a subset of clusters, where chemistry is solved and then mapped back to the original domain. In particular, a high-dimensional representation of the chemical state space is adopted for keeping track of the different fuel components, and a newly developed bounding-box-constrained k-means algorithm is used to subdivide the cells into reactively homogeneous clusters. The approaches have been tested on a number of simulations featuring multi-component diesel fuel surrogates, and different engine grids. The results show that significant CPU time reductions, of about one order of magnitude, can be achieved without loss of accuracy in both engine performance and emissions predictions, prompting for their applicability to more refined or full-sized engine grids.


Sign in / Sign up

Export Citation Format

Share Document