scholarly journals LIME AND GYPSUM APPLICATIONS ON SOIL CHEMICAL ATTRIBUTES AND INITIAL GROWTH OF EUCALYPTUS

FLORESTA ◽  
2018 ◽  
Vol 48 (4) ◽  
pp. 573 ◽  
Author(s):  
Camila Adaime Gabriel ◽  
Paulo Cezar Cassol ◽  
Marcia Aparecida Simonete ◽  
Letícia Moro ◽  
Priscylla Pfleger ◽  
...  

Eucalyptus crops in Southern Brazil are generally conducted in acidic soils, thus their yield can be increased by lime and gypsum applications. The objective of this study was to evaluate the effect of lime and gypsum applications on soil chemical attributes and initial growth of Eucalyptus benthamii and Eucalyptus dunnii in a Humic Cambisol (Inceptisol). The experiment was conducted in a greenhouse, with seedlings of both species of eucalyptus grown in soil treated with different rates of lime (0, 3, 6, and 12 Mg ha-1), and gypsum (0, 6, 3, 12.6, and 25.2 Mg ha-1). At 90 days after application of the treatments, the soil chemical attributes and growth components of eucalyptus seedlings. The lime increased the production shoot dry weight, however, the response to gypsum was negative. The lime increased the soil pH, exchangeable calcium (Ca), base saturation (V %), and slightly the soil electrical conductivity, decreased the soil aluminium saturation (m %), and promoted little reduction in the exchangeable potassium (K) and magnesium (Mg) contents. The gypsum didn't alter the soil pH, but decreased the m%, increased soil phosphorus (P) contents, and expressively increased the electrical conductivity, which may have had a negative effect on the eucalyptus growth. In conclusion, the addition of limestone decreases the soil acidity and benefits the growth of eucalyptus seedlings. However, the addition of gypsum has no expressive effects upon those variables, but it can decrease the growth of seedlings when the rates are excessive.

2018 ◽  
Vol 175 ◽  
pp. 217-225 ◽  
Author(s):  
Guilherme M. Sanches ◽  
Paulo S.G. Magalhães ◽  
Armando Z. Remacre ◽  
Henrique C.J. Franco

HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 790B-790
Author(s):  
Sudeep Vyapari* ◽  
S.M. Scheiber ◽  
Richard C. Beeson

During Fall 2003, a study was conducted to determine the effect of soil amendments on growth and response of Pentas lanceolata `New Look Red' in the landscape. Pentas were grown in 250L drainage lysimeters in an open-sided clear polyethylene covered shelter filled with local top soil (Apopka fine sand). The treatments used were non-amended top soil (control) and soil amended with either compost (5% by volume) or clay (5% by volume) in the top 15 cm. Best Management Practices were followed. Irrigation frequency and rate were regulated using a tensiometer-controlled automatic irrigation system. When plant available water in each soil type had declined to 70% or less, the plants were irrigated back to field capacity. Data were recorded on initial and final growth indices, shoot dry weight, and root dry weight. Final growth indices between control and soil amended with compost were not different; however, growth in the clay-based soil was significantly less than the compost-based soil type. The mean shoot dry weight (77.2 g) produced from plants in compost amended soil type was significantly higher than either control (57.45 g) or clay amended (54.92 g) soil types. No significant differences were found for either initial growth indices or root dry weight among the three treatments.


1985 ◽  
Vol 65 (4) ◽  
pp. 727-735 ◽  
Author(s):  
V. R. TIMMER

Unrooted hybrid poplar cuttings were grown in a greenhouse at varying soil pH. The soil was a loamy fine sand (pH 5.7) collected from an Ap horizon of a forest tree nursery. The pH was adjusted over a wide range by incorporating different rates of powdered lime or elemental sulfur. Lime additions failed to improve growth significantly over a 20-wk period, and excessive liming to pH 7.6 reduced shoot dry weight by 33%, probably because of decreased availability of micronutrients. Sulfur, acidifying the soil to pH 4.1, depressed growth as much as 76%. This growth inhibition was closely associated with increased Al in both foliage and soil as well as reduced foliar uptake of the other essential nutrients. Maximum height growth of clone DTAC-32 occurred between pH 6.0 and 7.0, which falls within the general guidelines for producing hardwood nursery stock. Key words: Populus, soil pH, aluminum toxicity, micronutrient deficiency


2018 ◽  
Vol 1 (1) ◽  
pp. 1-7
Author(s):  
Tristantia Anggita ◽  
Zainal Muktamar ◽  
Fahrurrozi Fahrurrozi

Recently, application of liquid organic fertilizer (LOF) in organic farming practices is of importance to prevent further soil degradation due to prolong and massive use of synthetic fertilizer. LOF provides faster plant nutrients than soil organic fertilizer. However, quality of LOF is substantially dependent on its sources. Animal wastes from rabbit, goat, and cattle are scarcely used as sources of LOF production. The study aimed to determine soil chemical improvement and potassium uptake by mung bean  as affected by LOF in Ultisol. The experiment was conducted at the Greenhouse Faculty of Agriculture, employing Completely Randomized Design with two factors. The first factor was animal wastes, consisting of goat, rabbit, and cattle wastes. The second factor was LOF concentration, consisting of 0%, 25%, 50%, 75%, and 100% LOF. LOF was prepared by mixing altogether animal feces, urine, soil, green biomass, EM-4 and fresh water to total volume of 10 l in a plastic container. LOF was decanted to the polybag every week starting at one week after planting for four weeks to a total volume of 750 ml per polybag. Variables observed included soil pH, total organic-C, exchangeable K, soil nitrate-N, K concentration in plant tissue, K-uptake, and shoot dry weight of sweet corn The result showed that application of LOF from rabbit waste had the highest increment of soil pH as compared to the other treatment. However, exchangeable K was observed highest at the treatment of LOF from goat waste. Sources of LOF from animal wastes did not have an effect on K-uptake by mung bean. In addition, application of LOF up to 100% was able to improve soil chemical properties as indicated by the increase in soil pH and exchangeable K. So did the concentration and uptake of K, as well as shoot dry weight. Fertilization with LOF has benefit to the improvement of soil chemical properties leading to better K uptake.


HortScience ◽  
2005 ◽  
Vol 40 (5) ◽  
pp. 1504-1506
Author(s):  
Holly L. Scoggins

Little taxa-specific information is available regarding the nutrition needs of container-grown herbaceous perennials. The goal was to determine optimum fertilizer concentrations and corresponding substrate testing values for greenhouse production of 10 taxa. Astilbe chinensis (Maxim.) Franch. & Savat.`Purpurkerze', Campanula carpatica Jacq. `Deep Blue Clips', Coreopsis verticillata L.`Golden Gain', Gaura lindheimeri Engelm. & Gray, `Siskiyou Pink', Heucherasanguinea Engelm. `Mt St. Helens', Lamium maculatum L. `White Nancy', Penstemon ×hybridus Hort. `Sour Grapes', Perovskia atriplicifolia Benth. `Longin', Salvia nemerosa L. `Blue Hill', and Veronica × Hort. `Goodness Grows' were grown for 10 weeks with 15N–7P–14K at four rates (50, 150, 250, and 350 mg·L–1 N) of constant liquid feed. Substrate pH and soluble salts levels were measured weekly using the pour-through extraction method. In analysis of all taxa, most effects [quality, shoot dry weight, pH and electrical conductivity (EC)] varied by rate × taxa. Though higher levels of fertilizer produced the largest plants in some cases, satisfactory quality was also attained with a lower rate. Quality and pH were negatively correlated for a few genera but most showed no relationship. Results of this study indicate not all taxa tolerate increased fertilizer levels and that the herbaceous perennials studied could be grouped by nutritional needs. Furthermore, target ranges for EC can be developed based on dry mass and quality ratings.


HortScience ◽  
2012 ◽  
Vol 47 (5) ◽  
pp. 631-636 ◽  
Author(s):  
Melek Ekinci ◽  
Ertan Yildirim ◽  
Atilla Dursun ◽  
Metin Turan

The objective of this study was to determine the effect of 24-epibrassinolide (24-EBL) applications on growth, chlorophyll, and mineral content of lettuce (Lactuca sativa L. var. Crispa) grown under salt stress. The study was conducted in pot experiments under greenhouse conditions. Lettuce seedlings were treated with seed and foliar 24-EBL applications at different concentrations (0, 1, 2, and 3 μM). Salinity treatments were established by adding 0, 50, and 100 mm of sodium chloride (NaCl) to a base complete nutrient solution. Results showed that salt stress negatively affected the growth and mineral content of lettuce plants. However, seed and foliar applications of 24-EBL resulted in greater shoot fresh weight, shoot dry weight, root fresh weight, and root dry weight as well as higher stem diameter than the control under salt stress. Salinity treatments induced significant increases in electrolyte leakage of plant, but foliar 24-EBL application reduced leaf electrolyte leakage and has determined lower values of leaf electrolyte leakage than non-treated ones. In regard to nutrient content, it can be inferred that 24-EBL applications increased almost all nutrient content in leaves and roots of lettuce plants under salt stress. Generally, the greatest values were obtained from 3 μM 24-EBL application. Treatments of 24-EBL alleviated the negative effect of salinity on the growth of lettuce.


1992 ◽  
Vol 117 (2) ◽  
pp. 209-215 ◽  
Author(s):  
David R. Dreesen ◽  
Robert W. Langhans

The objective of this study was to determine the dry weight, height, and leaf area growth responses of impatiens (Impatiens walerana Hook. f.) plug seedlings to air temperatures ranging from 18 to 29C. The conditions maintained in the controlled-environment growth rooms (CEGR) were ambient C02 levels, 24-h lighting, and photosynthetic photon flux (PPF) ranging from ≈215; to 335 μmol·m-2·s-1. Mean daily temperatures of the plug medium ranged from 19.6 to 27.7C. At the higher PPF level, shoot dry weight decreased at plug medium temperatures (PMT) > 25C; at lower PPF levels (<300 μmol·m-2·s-1), shoot dry weight continued to increase with PMT > 25C. The mean relative growth rate (MRGR) of shoot dry weight was positively correlated with PMT during the initial growth period (up to 14 days from sowing) and was negatively correlated thereafter. The maximum MRGR was predicted to occur at 11.7 days from sowing for a PMT of 19.6C, at 10.8 days for a PMT of 21.6C, and at 9.7 days for a PMT of 23.6C. Linear regression coefficients of shoot height as a function of PMT were substantially higher for seedlings grown at lower PPF than those for seedlings from the highest PPF level. Seedling leaf area consistently increased with increasing temperature. Net assimilation rate (NAR) decreased with increasing seedling age NAR increased with increasing PPF. A decrease in NAR was apparent at 29C relative to values at the lower temperatures. Leaf area ratio (LAR) declined with increasing seedling age and PPF; a quadratic relationship of LAR as a function of PMT indicates a minimum LAR at 22.5C. The seedlings grown at 29C were excessively tall, had thin succulent leaves, and were judged unacceptable for shipping and transplanting. Maximum quality indices (i.e., dry weight per height) were found at PMT of 24.3 to 25.OC for 10- to 14-day-old seedlings and at PMT of 23.0 to 24.OC for 16- to 20-day-old seedlings.


Weed Science ◽  
1998 ◽  
Vol 46 (6) ◽  
pp. 661-664 ◽  
Author(s):  
Bielinski M. Santos ◽  
Jose P. Morales-Payan ◽  
William M. Stall ◽  
Thomas A. Bewick

Greenhouse and field experiments were conducted to determine the effects of nitrogen (N) supply and purple nutsedge population densities on the yield of radish. In the greenhouse studies, additive series with purple nutsedge densities of 0, 50, 100, 200 or 350 plants m−2were established. Nitrogen rates of 0, 110, 220, or 330 kg ha−1were provided to the potting medium. A significant density by N interaction was found for radish fresh weight. Within a given nutsedge density, radish yield decreased as N rate increased. In field studies, additive series of 0, 50, 100, 150, or 200 nutsedge plants m−2were established the same day radish was sown. Nitrogen rates were 100 or 200 kg ha−1. Marketable radish yield losses and nutsedge shoot dry weight and height were determined 30 d after seeding the crop. Nutsedge densities and N rates interactively influenced radish root yield. Radish yield loss reached 100% at nutsedge densities of 75 and 125 plants m−2at 200 and 100 kg N ha−1, respectively. Purple nutsedge produced larger shoot biomass as N increased from 100 to 200 kg ha−1. Results of both greenhouse and field studies showed that as N increased, the negative effect of the weed on the crop was enhanced.


2009 ◽  
Vol 66 (2) ◽  
pp. 180-187 ◽  
Author(s):  
Huseyin Karlidag ◽  
Ertan Yildirim ◽  
Metin Turan

Strawberry is considered as a salinity sensitive species and is adversely affected in response to the salt stress in terms of growth and yield. Pot experiments were conducted to determine the effect of exogenous salicylic acid (SA) application on physiology, growth, chlorophyll and mineral content of strawberry grown under salt stress and greenhouse conditions. Strawberry plants were treated with SA at different concentrations (0.0, 0.25, 0.50 and 1.00 mM). Salinity treatments were established by adding 0 and 35 mM of NaCl to a base complete nutrient solution. Salt stress negatively affected the growth, chlorophyll content and mineral uptake of strawberry plants. However, plants treated with SA often had greater shoot fresh weight, shoot dry weight, root fresh weight and root dry weight as well as higher chlorophyll content under salt stress. The greatest values were obtained with 1.00 mM SA treatment in both saline and non-saline conditions. Leaf water relative content (LWRC) was reduced in response to salt stress while electrolyte leakage was raised. SA treatments induced increases in LWRC and decreases in electrolyte leakage compared to the control under salt stress. With respect to the nutrient content, SA treatments increased almost contents of all nutrients in leaves and roots of strawberry plants under salt stress. The greatest values were often obtained by the 1.00 mM SA treatment. These findings suggest that the SA treatments can ameliorate the negative effect of salinity on the growth of strawberries.


Sign in / Sign up

Export Citation Format

Share Document