scholarly journals Design Analysis of Thermoacoustic Refrigerator Using Air and Helium as Working Substances

In this paper, thermoacoustic refrigerator design strategy with parameters normalization and literature review covering the recent development in the modification of the resonator shape and size is discussed. The design of a 10 W cooling power thermoacoustic refrigerator using air as working substance and the effect of operating frequency on viscous and thermal penetration depths, and on stack sheet thickness and spacing are discussed. The promising 10 W cooling power TDH (Taper and Divergent section with Hemispherical end) resonator design operating with air and helium gases as working substances is analyzed using DeltaEC software. The analysis results show that the TDH resonator design using helium as working substance operates at lower drive ratio (14%) compared to air (25%). In comparison, DeltaEC predicts a decent low temperature of -35.4 o C at cold heat exchanger with a COP of 0.5294 when operated using helium gas, and for air is -9 oC and 0.8113 respectively, and the results are discussed.

2015 ◽  
Vol 23 (03) ◽  
pp. 1550020 ◽  
Author(s):  
B. G. Prashantha ◽  
M. S. Govinde Gowda ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham

This paper deals with the basic insight of thermoacoustic refrigeration concepts, and the working principle, history and the role of linear thermoacoustic theory in designing a thermoacoustic refrigerator system are discussed. Resonator design optimization procedure for a 10W cooling power thermoacoustic refrigerators is discussed. The optimized resonator designs proposed in this paper are found to be efficient compared to published resonator designs. The effects of drive ratio on the theoretical performance by varying dynamic pressure amplitude from 0.2 bar to 0.4 bar in the steps of 0.05 bar on the optimized resonator designs are discussed. Performance simulation results for the optimized resonator designs using DeltaEC software are discussed. Simulation results are in agreement with theoretical results.


2013 ◽  
Vol 21 (01) ◽  
pp. 1350001 ◽  
Author(s):  
B. G. PRASHANTHA ◽  
M. S. GOVINDE GOWDA ◽  
S. SEETHARAMU ◽  
G. S. V. L. NARASIMHAM

This paper deals with the design and analysis of a quarter-wavelength, 10 W capacity, thermoacoustic refrigerator using short stack boundary layer approximation assumptions. The effect of operating frequency on the performance of the refrigerator is studied using dimensional normalization technique. The variation of stack diameter with average gas pressure and cooling power is discussed. The resonator optimization is discussed and the calculation results show a 9% improvement in the coefficient of performance and 201% improvement in power density for the optimized quarter-wavelength resonator compared to published optimization studies. The optimized resonator design is tested with DeltaEC software and the results show better performance compared to past established resonator designs.


2017 ◽  
Vol 25 (01) ◽  
pp. 1750002 ◽  
Author(s):  
B. G. Prashantha ◽  
M. S. Govinde Gowda ◽  
S. Seetharamu ◽  
G. S. V. L. Narasimham

In this paper, the design of a loudspeaker driven 10[Formula: see text]W cooling power stack-based thermoacoustic refrigerator at 3% drive ratio for a temperature difference of 80[Formula: see text]K using helium as working fluid is discussed. The refrigerator is designed using linear thermoacoustic concepts. Using linear thermoacoustic equations, a theoretical minimum cold heat exchanger temperature is estimated at 75% porosity of stack-heat exchanger system. This paper focuses on the comparative analysis of the present design with the similar 10[Formula: see text]W thermoacoustic refrigerator designs found in the literature. The theoretical performance comparison of TSDH, TDH and CDH resonators designed at 2% and 3% drive ratio is discussed. The resonator designs are validated using DeltaEC software and the results are discussed. DeltaEC simulation results show that the diameter of the vibrating diaphragm of the loudspeaker equal to the diameter of the stack-heat exchangers system has higher electroacoustic efficiency (74.7%) and better performance compared to the smaller diaphragm (42.6%) used in the past research.


2014 ◽  
Vol 22 (03) ◽  
pp. 1450015 ◽  
Author(s):  
B. G. PRASHANTHA ◽  
M. S. GOVINDE GOWDA ◽  
S. SEETHARAMU ◽  
G. S. V. L. NARASIMHAM

The design and optimization procedure for a loudspeaker driven 10-W cooling power thermoacoustic refrigerator components with a temperature difference of 120 K has been discussed using the linear thermoacoustic theory. The resonator losses are proportional to surface area and the optimum diameter ratio of small and large resonator tubes for minimum heat loss for a quarter-wavelength hemispherical ended resonator design is discussed. The hemispherical ended resonator design is further analytically optimized to increase COP, cooling effect at cold heat exchanger and power density by decreasing total resonator surface area and volume. An alternate convergent-divergent resonator design is proposed which is found to be more efficient compared to previous published designs. Resonator designs are tested with DeltaEC software, which predicts a lowest temperature of -48°C and -47°C for the improved hemispherical and convergent-divergent resonator designs, respectively. Theoretical results are in good agreement with DeltaEC results.


Author(s):  
Muji Setiyo ◽  
Bagiyo Condro Purnomo ◽  
Budi Waluyo ◽  
Suroto Munahar ◽  
Muhammad Latifur Rochman ◽  
...  

2019 ◽  
Vol 8 (4) ◽  
pp. 2704-2712

The refrigerants are usually provided in the conventional refrigeration system despite the fact that, they produce CFCs and HCFCs, which are hazardous to the environment. However, these disadvantages can be overcome using air or inert gas in the thermoacoustic refrigeration system. The present research involves the effect of spacing of parallel plate stack on the performance of thermoacoustic refrigerator (TAR) in terms of temperature difference (∆T). The entire resonator system as well as other structural parts of the refrigerator are fabricated by using PVC to reduce conduction heat loss. Three parallel plate stacks have been used to study the performance of TAR considering different porosity ratios by varying the gap between the parallel plates (0.28 mm, 0.33 mm and 0.38 mm). The parallel plate stacks are fabricated by using aluminium and mylar sheet material and the working fluid used for the experimental study is helium. The experiments have been carried out with different drive ratios ranging from 0.6% to 1.6% with operating frequencies of 200 – 600 Hz. Also the mean operating pressure used for the experiment is 2 to 10 bar and cooling load of 2 to 10W are considered. The ∆T between the hot heat exchanger and cold heat exchanger is recorded using RTDs and Bruel and Kjaer data acquisition system. Experimental results shows that the lowest temperature measured at cold heat exchanger is -2.1 oC by maintaining the hot heat exchanger temperature at about 32 oC. The maximum temperature difference of 32.90 oC is achieved.


Sign in / Sign up

Export Citation Format

Share Document