scholarly journals Disruptores endocrinos y su camino hacia el desequilibrio metabólico

2020 ◽  
Vol 7 (1) ◽  
pp. 38-42
Author(s):  
P. Sánchez ◽  
M. Zanabria ◽  
S. Latorre ◽  
J. Calvache ◽  
A. Coy ◽  
...  

El presente artículo de revisión tiene como objetivo presentar, de forma resumida, la evidencia que existe sobre las repercusiones metabólicas a nivel de obesidad y diabetes, que se genera como consecuencia de la exposición a sustancias químicas exógenas, denominadas disruptores endocrinos (DE), a las cuales nos exponemos de forma cotidiana y que afectan nuestra salud y la de nuestra descendencia. Adicionalmente, con la presente revisión hacemos un llamado no solo a la comunidad médica, sino a los sectores involucrados en la producción, distribución y reglamentación del uso de estas sustancias, pues cada vez hay más evidencia de los efectos nocivos que pueden generar y debemos evitar su uso. Los datos se obtuvieron de estudios clínicos aleatorizados y de una revisión en idioma español e inglés de los últimos 15 años, que incluyó los términos DeCS: disruptores endocrinos, con alternativa DeCS: sustancias disruptoras endocrinas y efecto disruptor endocrino, así como términos MeSH: endocrine disruptors y alternativas MeSH: disruptors, endocrine; endocrine disrupting chemicals; chemicals, endocrine disrupting; endocrine disruptor effect; disruptor effect, endocrine; effect, endocrine disruptor; endocrine disruptor effects; disruptor effects, endocrine; effects, endocrine disruptor.

Author(s):  
Camille Gonza´lez ◽  
Anai´s Va´zquez ◽  
Angel Morales ◽  
Liz Di´az ◽  
Carlos R. Cabrera ◽  
...  

Endocrine disruptor compounds are able to mimic or antagonize the effects of endogenous hormones. Phenolic compounds are one of the most abundant classes of endocrine disruptors due to their presence in a broad range of chemical manufacturing processes. The detection of such compounds in food, medicine, and the environment (i.e., water) is crucial to ensure their quality. To prevent the noxious effects of endocrine disruptors an efficient monitoring system is required in order for immediate remediation to be activated. The long-term goal of the project is to develop a robust and stable amperometric enzyme based biosensor able to determine the concentration of phenolic endocrine disruptors. This type of biosensor can be useful to monitor endocrine distruptors in biological fluids and environmental samples as for example the spacecraft drinking water, to ensure the health of the astronauts in space.


2019 ◽  
Vol 34 (4) ◽  
pp. 309-325 ◽  
Author(s):  
Chinonye Doris Onuzulu ◽  
Oluwakemi Anuoluwapo Rotimi ◽  
Solomon Oladapo Rotimi

Abstract Endocrine disrupting chemicals (EDCs) are xenobiotics which adversely modify the hormone system. The endocrine system is most vulnerable to assaults by endocrine disruptors during the prenatal and early development window, and effects may persist into adulthood and across generations. The prenatal stage is a period of vulnerability to environmental chemicals because the epigenome is usually reprogrammed during this period. Bisphenol A (BPA), lead (Pb), and dichlorodiphenyltrichloroethane (DDT) were chosen for critical review because they have become serious public health concerns globally, especially in Africa where they are widely used without any regulation. In this review, we introduce EDCs and describe the various modes of action of EDCs and the importance of the prenatal and developmental windows to EDC exposure. We give a brief overview of epigenetics and describe the various epigenetic mechanisms: DNA methylation, histone modifications and non-coding RNAs, and how each of them affects gene expression. We then summarize findings from previous studies on the effects of prenatal exposure to the endocrine disruptors BPA, Pb and DDT on each of the previously described epigenetic mechanisms. We also discuss how the epigenetic alterations caused by these EDCs may be related to disease processes.


2014 ◽  
Vol 58 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Elaine Maria Frade Costa ◽  
Poli Mara Spritzer ◽  
Alexandre Hohl ◽  
Tânia A. S. S. Bachega

Environmental agencies have identified a growing number of environmental contaminants that have endocrine disrupting activity, and these can become a major public health problem. It is suggested that endocrine disruptors could account for the higher-than-expected increase in the prevalence of some non-communicable diseases, such as obesity, diabetes, thyroid diseases, and some cancers. Several endocrine Disrupting Chemicals (EDCs), such as pesticides, bisphenol A, phthalates, dioxins, and phytoestrogens, can interact with the female reproductive system and lead to endocrine disruption. Initially, it was assumed that EDCs exert their effects by binding to hormone receptors and transcription factors, but it is currently known that they may also alter the expression of enzymes involved in the synthesis or catabolism of steroids. Biomonitoring studies have identified these compounds in adults, children, pregnant women, and fetuses. Among the diseases of the female reproductive tract associated with EDCs exposure are the following: precocious puberty, polycystic ovary syndrome, and premature ovarian failure. The different populations of the world are exposed to a great number of chemicals through different routes of infection; despite the various available studies, there is still much doubt regarding the additive effect of a mixture of EDCs with similar mechanisms of action.


2012 ◽  
Vol 49 (2) ◽  
pp. R61-R67 ◽  
Author(s):  
Abby F Fleisch ◽  
Robert O Wright ◽  
Andrea A Baccarelli

Endocrine disrupting chemicals that are structurally similar to steroid or amine hormones have the potential to mimic endocrine endpoints at the receptor level. However, more recently, epigenetic-induced alteration in gene expression has emerged as an alternative way in which environmental compounds may exert endocrine effects. We review concepts related to environmental epigenetics and relevance for endocrinology through three broad examples: 1) effect of early-life nutritional exposures on future obesity and insulin resistance, 2) effect of lifetime environmental exposures such as ionizing radiation on endocrine cancer risk, and 3) potential for compounds previously classified as endocrine disrupting to additionally or alternatively exert effects through epigenetic mechanisms. The field of environmental epigenetics is still nascent, and additional studies are needed to confirm and reinforce data derived from animal models and preliminary human studies. Current evidence suggests that environmental exposures may significantly impact expression of endocrine-related genes and thereby affect clinical endocrine outcomes.


2002 ◽  
Vol 18 (2) ◽  
pp. 489-494 ◽  
Author(s):  
Nicolás Olea-Serrano ◽  
Mariana F. Fernández-Cabrera ◽  
Rosa Pulgar-Encinas ◽  
Fátima Olea-Serrano

This paper presents an analysis of the opinions of different groups from: scientists, international regulatory bodies, non-governmental organizations and industry; with an interest in the problem of identifying chemical substances with endocrine disrupting activity. There is also discussion of the consequences that exposure to endocrine disruptors may have for human health, considering concrete issues related to: the estimation of risk; the tests that must be used to detect endocrine disruption; the difficulties to establish an association between dose, time of exposure, individual susceptibility, and effect; and the attempts to create a census of endocrine disruptors. Finally, it is proposed that not all hormonal mimics should be included under the single generic denomination of endocrine disruptors.


Author(s):  
Eleni Palioura ◽  
Eleni Kandaraki ◽  
Evanthia Diamanti-Kandarakis

AbstractPolycystic ovary syndrome (PCOS) is a heterogeneous disorder of unknown etiology that may arise from a combination of a number of underlying genetic interactions and predispositions with environmental factors. Endocrine disruptors and, in particular, Bisphenol A may represent one of the many underlying causes of the syndrome as they are experimentally linked to metabolic and reproductive derangements resembling PCOS-related disorders. Exposure to endocrine-disrupting chemicals may act as an environmental modifier to worsen symptoms of PCOS in affected females or to contribute to the final phenotype of the syndrome in genetically predisposed individuals.


2003 ◽  
Vol 75 (11-12) ◽  
pp. 2235-2247 ◽  
Author(s):  
M. C. Fossi ◽  
Letizia Marsili

In the last few decades, various studies have shown that aquatic mammals are sensitive to the toxicological effects of certain xenobiotic compounds, including the large class of endocrine-disrupting chemicals (EDCs). Since some EDCs, particularly organochlorines, tend to bioaccumulate and biomagnify in the aquatic food chain, various aquatic mammals, particularly those high in the food chain, such as pinnipeds, odontocete cetaceans, and polar bears, are potentially "at risk". The main aim of this chapter is to define the state of the art on effects of endocrine disruptors in aquatic mammals, both freshwater and marine. Another aim is to formulate recommendations for future research in this field and finally to define what can be done internationally for hazard/risk assessment and communication of the findings.


2020 ◽  
Vol 20 (5) ◽  
pp. 633-645 ◽  
Author(s):  
Hina Rashid ◽  
Saad S. Alqahtani ◽  
Saeed Alshahrani

Background: Food is indispensable for human life and determines the health and wellbeing of the consumer. As food is the source of energy for humans, it also emerges as one of the most important sources of exposure to deleterious chemicals both natural and synthetic. The food exposed chemicals cause a number of detrimental health effects in humans, with endocrine disruption being of serious concern amongst these effects. Such chemicals disrupting the health of endocrine system are known as endocrine-disrupting chemicals (EDCs). The food exposed EDCs need to be identified and classified to effectuate a cautious consumption of food by all and especially by vulnerable groups. Aim: The aim of the present review was to discuss food as a source of exposure to common endocrine disruptors in humans. This review presents the occurrence and levels of some of the critical endocrine disruptors exposed through frequently consumed diets. Methods: The major source of data was PubMed, besides other relevant publications. The focus was laid on data from the last five years, however significant earlier data was also considered. Conclusion: The food as a source of endocrine disruptors to humans cannot be neglected. It is highly imperative for the consumer to recognize food as a source of EDCs and make informed choices in the consumption of food items.


Sign in / Sign up

Export Citation Format

Share Document