GASTRORETENTIVE FLOATING MICROSPHERE OF NATEGLINIDE: FORMULATION, EVALUATION AND EFFECT OF DRUG-POLYMER RATIO

INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (06) ◽  
pp. 37-43
Author(s):  
A Semalty ◽  
◽  
A. Semwal

The study aims to develop gastroretentive floating drug delivery system of nateglinide which is used in the treatment of type – II diabetes. Due to the short biological half life of drug (about 1.5 hours), frequent dosing is required to maintain its therapeutic effect. Therefore, to prolong the gastric retention of nateglinide, its oil entrapped floating microspheres (different formulations with different drug to polymer ratio) were prepared using sodium alginate by emulsion gelation method. The prepared floating microspheres were subjected to evaluation for surface characteristic, entrapment efficiency, swelling index, in vitro buoyancy and in vitro drug release. The scanning electron microscope photograph indicated that the prepared microspheres were discrete and almost spherical in shape with a hollow inner core. The entrapment efficiency was found to be in the range of 80.47 % to 91.33% for all the formulations. Drug entrapment efficiency decreased with increasing polymer concentration in floating microspheres. Average buoyancy was found to be 93 % to 98% for all the formulations. The in vitro floating test clearly showed that most of the microspheres floated for around 12 hrs. The increase in polymer concentration slightly decreased the percent yield and the drug entrapment. On the other hand the increased polymer concentration resulted into increased degree of swelling and percent buoyancy. All the formulations showed good in vitro drug release with first order release by matrix diffusion process. Overall, among the different polymer-drug ratios investigated, 1:6 drug to polymer ratio showed the best buoyancy, highest swelling index, good drug release with good entrapment efficiency. It was concluded that drug-loaded floating alginate microspheres appeared to be a suitable delivery system for nateglinide for potential therapeutic use as a hypoglycemic agent.

Author(s):  
A K Gupta ◽  
Maurya S D ◽  
R C Dhakar ◽  
R D Singh

The interpenetrating hydrogels of clarithromycin were prepared by chemical crosslinking process using chitosan, poly (vinylpyrrolidone) and poly (acrylic acid) polymers and glutaraldehyde and N,N’-methylenebisacrylamide as crosslinking agents. The hydrogels were evaluated for FTIR analysis, differential scanning calorimetry (DSC), drug entrapment efficiency, scanning electron microscopy (SEM), swelling study, in-vitro drug release and mucoadhesive study. The formulation containing higher amount of chitosan showed greater swelling and drug release because of higher amount of NH2 as pendant group, which ionize at lower PH values. Finally, it was concluded that by appropriate modification of polymer ratio the extent of swelling and rate of drug release can be modulated. The result showed that IPN hydrogels prepared release the drug at lower PH value (PH 2.0) or in stomach thus maintaining antibiotic concentration in stomach for prolonged period of time.


2021 ◽  
Author(s):  
Cheran K ◽  
Udaykumar B Bolmal ◽  
Archana S Patil ◽  
Umashri A Kokatanur ◽  
Rajashree S Masareddy

Abstract Background: The goal of this study was to develop a gastro retentive floating drug delivery system that would improve site specific activity, patient compliance and therapeutic efficacy.Methodology: Floating microspheres of Miglitol were formulated by double emulsion method using ethyl cellulose and eudragit E100 different weight ratio and PVA as an emulsifier. It has been prepared with respect quantity of polymer concentration and stirring speed to evaluate for % buoyancy, drug entrapment efficiency, particle size drug release rate. Result: The percent of buoyancy, drug entrapment efficiency, particle size, and percentage yield were increased with increase the polymer mixture concentration. Among all formulation batches, F6 showed acceptable results drug entrapment efficiency (86.57%) and buoyancy (94.25%). F10 formulation was prepared to check the predicted and actual factors and compared with optimized formulation F6. The drug release was increased as the polymer concentration was decrease. The kinetic model zero order had the highest regression coefficient value, it was described as a sustained release dosage form. According to ICH guideline accelerated stability studies of F6 and F10 formulations were conducted for 90 days. After 90 days buoyancy and in vitro drug release was performed and the results were F6 and F10 buoyancy was found to be 88.21%, 87.22% and in vitro drug release was found to be 62.87%, 63.51%. Conclusion: The present study, showed compatibility of drug with polymers by FTIR in formulation. Floating microsphere of Miglitol was prepared by double emulsion technique. The F6 Miglitol floating microsphere was optimized formulation demonstrated with excellent drug entrapment performance (86.57%), good floating behaviour (94.25%), and the largest particle size (670µm). The present study concludes that floating based gastro retentive delivery system of Miglitol microspheres has a safe and effective drug delivery system with increased therapeutic efficacy and a longer duration of action.


2019 ◽  
Vol 70 (7) ◽  
pp. 2347-2349
Author(s):  
Ramona-Daniela Pavaloiu ◽  
Fawzia Sha At ◽  
Corina Bubueanu ◽  
Cristina Hlevca ◽  
Gheorghe Nechifor

The aim of this paper was the design and evaluation of delivery system for Armoracia rusticana leaves extract with the purpose to use such systems in food or cosmetic field. Liposomes loaded with Armoracia rusticana were prepared by film hydration method and presented good entrapment efficiency, nano-sizes ([150 nm), low polydispersity index and good stability over 90 days at 4oC. In vitro drug release study showed the ability of liposomes to provide slow release of extract with reduced burst effect compared to free extract. These promising results suggest that liposomes could be exploited as carriers for herbal ingredients.


INDIAN DRUGS ◽  
2014 ◽  
Vol 51 (07) ◽  
pp. 31-38
Author(s):  
Gurudev Kruthi ◽  
◽  
B. V. Basavaraj ◽  
S. Bharath ◽  
R. Deveswaran ◽  
...  

The main aim of the present work was to formulate and evaluate sustained release multiparticulate gastroretentive delivery system of cinnarizine. The microspheres were prepared by solvent evaporation method by using Eudragit RS 100 as a polymer in varying ratios. The prepared microspheres were evaluated for drug – polymer compatibility studies, micromeritic properties, drug entrapment efficiency, in vitro buoyancy and drug release studies. The mean particle size increased with increase in polymer concentration, ranging between 60.33 μm to 144.88 μm. FT IR studies showed that the drug and polymer were compatible with each other. The entrapment efficiency decreased with increase in the polymer concentration with values of 50%, 33.3% and 25% respectively. The microspheres floated upto 9 h over the surface of the gastric buffer medium and the buoyancy percentage was found to be in the range of 64.3 – 76.2%. In vitro drug release studies showed that the prepared microspheres exhibited prolonged drug release upto 62.89% for more than 9 h. The mechanism of drug release was found to be a combination of both peppas and matrix kinetics. Thus the developed floating microspheres of cinnarizine may be used as sustained drug delivery system for increasing the therapeutic efficacy with an improved patient compliance.


2017 ◽  
Vol 5 (04) ◽  
pp. 29-33
Author(s):  
Naresh Kalra ◽  
G. Jeyabalan

Drug delivery systems are defined as formulations aim for transportation of a drug to the desired area of action within the body. The aim of the study was to investigate the feasibility of using Niosomes as a drug delivery system for Cisplatin By entrapment of drug in Niosomes, dose also could be reduced. Niosomes were prepared by Ethanol injection method using cholesterol and Surfactant. Particle size, zeta potential, entrapment efficiency and in vitro drug release studies were performed. The targeted niosome delivery system is composed of drug, surfactant and cholesterol. With regard to the influence of formulation variables on the percent drug loading (PDL), different compositions with varying ratios of surfactant and cholesterol were studied. In –Vitro drug release mechanism was studied for 24 hours.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


Author(s):  
Rajkumar Aland ◽  
Ganesan M ◽  
P. Rajeswara Rao ◽  
Bhikshapathi D. V. R. N.

The main objective for this investigation is to develop and optimize the solid lipid nanoparticles formulation of acitretin for the effective drug delivery. Acitretin loaded SLNs were prepared by hot homogenization followed by the ultrasonication using Taguchi’s orthogonal array with eight parameters that could affect the particle size and entrapment efficiency. Based on the results from the analyses of the responses obtained from Taguchi design, three different independent variables including surfactant concentration (%), lipid to drug ratio (w/w) and sonication time (s) were selected for further investigation using central composite design. The  lipid Dynasan-116, surfactant poloxomer-188 and co surfactant egg lecithin resulted in better percent drug loading and evaluated for particle size, zeta potential, drug entrapment efficiency, in vitro drug release and stability. All parameters were found to be in an acceptable range. TEM analysis has demonstrated the presence of individual nanoparticles in spherical shape and the results were compatible with particle size measurements.  In vitro drug release of optimized SLN formulation (F2) was found to be 95.63 ± 1.52%, whereas pure drug release was 30.12 after 60 min and the major mechanism of drug release follows first order kinetics release data for optimized formulation (F2) with non-Fickian (anomalous) with a strong correlation coefficient (R2 = 0.94572) of Korsemeyer-Peppas model. The total drug content of acitretin gel formulation was found to 99.86 ± 0.012% and the diameter of gel formulation was 6.9 ± 0.021 cm and that of marketed gel was found to be 5.7 ± 0.06 cm, indicating better spreadability of SLN based gel formulation. The viscosity of gel formulation at 5 rpm was found to be 6.1 x 103 ± 0.4 x 103 cp. The release rate (flux) of acitretin across the membrane and excised skin differs significantly, which indicates about the barrier properties of skin. The flux value for SLN based gel formulation (182.754 ± 3.126 μg cm−2 h−1) was found to be higher than that for marketed gel (122.345 ± 4.786 μg cm−2 h−1). The higher flux and Kp values of SLN based gel suggest that it might be able to enter the skin easily as compared with marketed gel with an advantage of low interfacial tension of the emulsifier film that ensures an excellent contact to the skin. This topically oriented SLN based gel formulation could be useful in providing site-specific dermal treatment of psoriasis


2019 ◽  
Vol 9 (2) ◽  
pp. 89-96
Author(s):  
Abbaraju Krishna Sailaja ◽  
Juveria Banu

Aim: The aim of this investigation was to develop and characterize naproxen loaded chitosan nanoparticles by emulsion interfacial reaction method. Methodology: For emulsion interfacial reaction method chitosan was used as a polymer. In this method, eight formulations were prepared by varying drug to polymer concentration. Discussion: Out of eight formulations prepared using emulsion interfacial reaction method EI8 formulation was found to be the best formulation. The drug content was observed as 94.4%, entrapment efficiency and loading capacity were found to be 87.5% and 75%, respectively. The mean particle diameter was measured as 324.6nm and the Zeta potential value was found to be -42.4mv. In vitro drug release data showed 97.2% of drug release rate sustained up to 12hrs. Conclusion: The results clearly reveal that EI8 formulation having the highest amount of drug was considered as the best formulation because of its small mean particle diameter, good entrapment efficiency, and stability.


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Sign in / Sign up

Export Citation Format

Share Document